MITSUBISHI

Mitsubishi Programmable Logic Controller

• SAFETY PRECAUTIONS •

(Always read these instructions before using this equipment.)

Before using this product, please read this manual and the relevant manuals introduced in this manual carefully and pay full attention to safety to handle the product correctly.

The instructions given in this manual are concerned with this product. For the safety instructions of the programmable controller system, please read the CPU module user's manual.

In this manual, the safety instructions are ranked as "DANGER" and "CAUTION".

Note that the \triangle CAUTION level may lead to a serious consequence according to the circumstances. Always follow the instructions of both levels because they are important to personal safety.

Please save this manual to make it accessible when required and always forward it to the end user.

[Cautions Regarding Test Operation]

- The ladder logic test tool (LLT) simulate an actual PLC to debug sequence programs. However, the execution of a debugged sequence program cannot be guaranteed.
 After debugging using the ladder logic test tool (LLT), connect an actual PLC and debug the sequence program normally before starting actual operation.
 Failure to correctly debug a sequence program may result in accidents due to incorrect outputs of operations.
 The simulated result may differ from actual operation because the ladder logic test tool (LLT) cannot access I/O units or special function units and do not support some instructions or device memory.
 After debugging using the ladder logic test tool (LLT), connect an actual PLC and debug the sequence program normally before starting actual operation.
 - of operations.

REVISIONS

* The manual number is given on the bottom left of the back cover.

Print Date	* Manual Number	Revision
Sep., 1999	SH-080034-A	First edition

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 1999 MITSUBISHI ELECTRIC CORPORATION

INTRODUCTION

Thank you for purchasing the Mitsubishi general-purpose MELSEC series sequencer. Read this manual and make sure you understand the functions and performance of MELSEC series sequencer thoroughly in advance to ensure correct use.

CONTENTS

Safety Precautions	A-	1
Revisions	A-	2
Contents	A-	3
About Manuals	A-	6
About the Generic Terms and Abbreviations	A-	7

1. OUTLINE OF LADDER LOGIC TEST TOOL (LLT)

1.1	Features of the Ladder Logic Test Tool (LLT)	1-	2
1.2	Differences To Debugging with an Actual PLC Connected	1-	5

2. SPECIFICATIONS

2.1 Table of Functions	2- 1
2.2 Function List	2- 3
2.3 Devices and Instructions Supported by the Ladder Logic Test Tool (LLT)	2- 6
2.4 Ladder Logic Test Tool (LLT) Restrictions and Cautions	2- 7
2.4.1 Restrictions and cautions common to each type of CPU	2- 7
2.4.2 Restrictions and cautions for the A Series CPU functions	2-10
2.4.3 Restrictions and cautions for the QnA Series CPU functions	2-12
2.4.4 Restrictions and cautions for the FX Series CPU functions	2-15
2.4.5 Restrictions and cautions for the Motion controller CPU functions	2-17
2.4.6 Restrictions and precautions for the Q series CPU functions	2-18
2.5 Ladder Logic Test Tool (LLT) Safety and Handling Precautions	2-22

3. COMMON OPERATIONS FOR THE LADDER LOGIC TEST TOOL (LLT)

3-1 to 3-24

1-1 to 1-6

2- 1 to 2- 22

 3.1 Procedure from Installation to Debugging	3-1 3-3
3.4 Screen Operations	3- 5 3- 6 3- 6
 3.4.2 Device Memory Monitor operations	3-12 3-18 3-20

4. SIMULATION OF EXTERNAL DEVICE OPERATION -- I/O SYSTEM SETTING FUNCTIONS

4.1 Simulation with the I/O System Setting Functions	
4.2 Checking Current I/O System Setting Status	
4.3 Stopping Current I/O System Setting Operation	
4.4 Saving I/O System Settings to File	
4.5 Reading the I/O System Setting File	
5. MONITORING DEVICE MEMORY - MONITOR TEST FUNCTION	5- 1 to 5- 22
5.1 GPPW and Ladder Logic Test Tool (LLT) Monitor Test Functions	5- 1
5.2 Monitoring/Testing the Device Memory	
5.2.1 Displaying the timing chart for devices	5-2
5.2.2 Selecting the devices for the monitor test	5- 3
5.2.3 Stopping and restarting the device memory monitor	5- 5
5.2.4 Changing the monitor communications interval	5- 6
5.2.5 Changing the device memory monitor format	5- 7
5.2.6 Changing the window display format	5- 8
5.2.7 Running the device test	5-12
5.3 Using Timing Chart	5-13
6. SAVING AND READING THE DEVICE AND BUFFER MEMORIES - TOO	OL FUNCTIONS 6- 1 to 6- 6
6.1 Saving the Device and Buffer Memories	6- 1
6.2 Reading Saved Device Memory or Buffer Memory Data	6- 3
7. EXAMPLES OF LADDER LOGIC TEST TOOL (LLT) APPLICATIONS	7- 1 to 7- 18
7.1 Debugging Using GPPW Step Execution Function	
7.2 A/QnA Series Special Function Module Program Debugging Example	
7.3 Using Timing Chart Display for Debugging	
7.4 Using I/O System Settings for Debugging	7-13
8. TROUBLESHOOTING	8- 1 to 8- 8
8.1 Error Messages Displayed on the LED Indicators	8- 1
APPENDICES	Appendix- 1 to Appendix- 42
	A 11 4
	Appendix- 1
Appendix 1.1 The A Series CPU function ladder logic test tool (LLT)	Appendix- 1
Appendix 1.2 The QnA Series CPU function ladder logic test tool (LLT)	Appendix- 4
Appendix 1.3 FX Series CPU function ladder logic test tool (LLT)	Appendix-10
Appendix 1.4 Ladder logic test tool (LLT) for Q series CPU (A mode) func	tions Appendix-23
Appendix 1.5 Ladder logic test tool (LLT) for Q series CPU (Q mode) func	tions Appendix-23

Appendix-30	Appendix 2.2 QnA series function ladder logic test tool (LLT)
Appendix-32	Appendix 2.3 FX series function ladder logic test tool (LLT)
nctions Appendix-37	Appendix 2.4 Ladder logic test tool (LLT) for Q series CPU (A mode) function
nctions Appendix-37	Appendix 2.5 Ladder logic test tool (LLT) for Q series CPU (Q mode) function
Appendix-39	Appendix 3 List of Devices Usable with the I/O System Settings

Index- 1 to Index- 2

About Manuals

The following manuals are also related to this product. In necessary, order them by quoting the details in the tables below.

Related Manuals

Manual Name	Manual Number (Model Code)
GPP Function software package for Windows SW4D5C-GPPW-E(V) /Ladder Logic Test Tool Function software package SW4D5C-LLT-E(V) Operating Manual (Start up) Describes the system configuration, installation procedure, and start-up procedure of the SW4D5- GPPW-E(V) and SW4D5C-LLT-E(V) software packages. (Printed form) (Packed with the product)	IB-080056 (13J962)
GPP Function software package for Windows SW4D5C-GPPW-E(V) Operating Manual Describes the online functions of SW4D5C-GPPW-E(V) including the programming procedure, printing out procedure, monitoring procedure, and debugging procedure. (Printed form) (Optionally available)	SH-080032 (13J963)

REMARK

For the GPP Function software package for Windows SW4D5C-GPPW-E(V) Operating Manual, the software package and manual are contained on a single CD-ROM as a set.

If you need the GPP function software for Windows SW4D5C-GPPW-E(V) Operating Manual and the Ladder Logic Test Tool Function software package for Windows SW4D5C-LLT-E(V) Operating Manual separately from the software, they are optionally available in printed form.

About the Generic Terms and Abbreviations

Unless otherwise specified, the table below defines the abbreviations and terminology of the ladder logic test tool software package of model SW4D5C-LLT-E(V) used in this manual.

Generic Term/Abbreviation	Description
Ladder logic test tool (LLT)	Abbreviation for "SW4D5C-LLT-E(V) ladder logic test tool functions software package"
GPPW	Abbreviation for "SW D5C-GPPW-E(V) function software package"
Windows 95	Abbreviation for "Microsoft Windows 95 (English version)"
Windows 98	Abbreviation for "Microsoft Windows 98 (English version)"
Windows NT 4.0	Abbreviation for "Microsoft Windows NT Workstation 4.0 (English version)"
Debug	Locating and correcting errors in a sequence program to create a correct program.
Device memory	Areas to store device data in the ladder logic test tool (LLT), including inputs (X), outputs (Y), relays (M), timers (T), data registers (D), etc.
Monitor	Monitoring to determine the ON/OFF status of bit devices or the PV of word devices.
Simulations	Test execution of a program on a personal computer with the ladder logic test tool (LLT) installed, instead of execution in an actual PLC.
Timing chart	Functions to visually confirm ON/OFF status of a bit device or the change in value of a word device.
WDT error	An error issued when a sequence program is written in such a way that it runs an infinite loop.
Pseudo-sequence program	Indicates a sequence program created by the ladder logic test tool (LLT) to realize the settings of I/O System Settings.
A Series CPU	A0J2H, A1FX, A1S (S1), A1SJ, A1SH, A1SJH, A1N, A2C, A2CJ, A2N (S1), A2S (S1), A2SH (S1), A3N, A2A (S1), A3A, A2U (S1), A2US (S1), A2USH-S1, A3U, A4U, CPU board (A80BD-A2USH-S1)
QnA Series CPU	Q2A, Q2AS (H), Q2AS1, Q2AS (H) S1, Q3A, Q4A, Q4AR
FX series CPU	FX0 (S), FX0N, FX1N, FX2C, FX2N (C)
Motion controller CPU	A171SH, A172SH, A273UH (S3)
Q series CPU	Generic term for Q series CPU (A mode) and Q series CPU (Q mode).
Q series CPU (A mode)	Q02-A, Q02H-A, Q06H-A
Q series CPU (Q mode)	Q02, Q02H, Q06H, Q12H, Q25H

Microsoft Windows and Microsoft Windows NT are trademarks of Microsoft Corporation U.S.A. Other names of companies and products are also trademarks or registered trademarks of companies.

MEMO

1. OUTLINE OF LADDER LOGIC TEST TOOL (LLT)

This operating manual describes the functions and operation of the SW4D5C-LLT-E(V) ladder logic test tool functions software package.

The SW4D5C-LLT-E(V) ladder logic test tool functions software package (hereafter "ladder logic test tool (LLT)") is a software package which runs under Windows 95/98/NT4.0.

Offline debugging is possible by adding the ladder logic test tool (LLT) to a computer in which the SW D5C-GPPW- E(V)/SW D5F-GPPW-E(V) GPP function software package (hereafter "GPPW") is installed. The offline debugging functions include the device monitor test and simulated operation of external device I/Os. As the ladder logic test tool (LLT) allow sequence programs to be developed and debugged on a single computer, checking a modified program is quick and easy. GPPW must be installed before these functions can be used.

A sequence program created with GPPW can be debugged by writing it to the ladder logic test tool (LLT).

The sequence program is automatically written to the ladder logic test tool (LLT) when the ladder logic test tool (LLT) are started up.

See the following manuals for information on operations not covered in this manual:

1.1 Features of the Ladder Logic Test Tool (LLT)

The main features of the ladder logic test tool (LLT) are described below.

(1) Can be utilized as a single program debugging tool

Using the PLC for debugging in the conventional method required not only the PLC but also I/O and special function modules, external device, etc. to be prepared as needed.

When using the ladder logic test tool (LLT), you can perform debugging on a single personal computer because I/O System Settings for external device simulation and the simulation function for special function module buffer memory are available in addition to the simulation function for PLC.

Also, because of no connection to actual equipment, you can proceed with debugging safely if an abnormal output should occur due to a program bug.

Conventional debugging

Debugging using ladder logic test tool (LLT)

(2) Comparison between PLC and ladder logic test tool (LLT) There are the following differences between connection with a PLC and use of the ladder logic test tool (LLT).

	An	AnA	AnU Q (A mode)	FX	QnACPU	Q (Q mode)	Refer To
Device range	O*1	0*1	() * 1	0	○*8	○*8	Appendix- 1
Instruction (common)	○*2	○*2	○*2	○*6	0*9	○*9	Appendix- 24
Instruction (dedicated)		○*3	○*3			_	Appendix- 25
Parameter	O*4	○*4	○*4	0*7	○ * 10	○ * 10	2-9
Network parameter	×	×	×	×	×	×	2-9
Special function module	○*5	○*5	○*5	○*5	○*5	○*5	

O: Supported ×: Unsupported —: Irrelevant

*1: Device I is not supported.

- *2: Output instructions, program branch instructions, data processing instructions, display instructions and other instructions include unsupported instructions.
- *3: Structured program instructions, I/O operation instructions, character string processing instructions, clock instructions, data link instructions and special module instructions include unsupported instructions.
- *4: Memory capacity setting, PLC RAS setting, PLC system setting and device setting include unsupported items.
- *5: Only the buffer memory area is supported. The size of the buffer memory area is fixed to 16K points. The QCPU (Q mode) is fixed to 64K points.
- *6: Program flow instructions, high-speed processing instructions, convenient instructions, external device instructions and clock instructions include unsupported instructions.
- *7: Memory capacity setting, device setting, PLC name setting, PLC system setting (1) and PLC system setting (2) include unsupported items.
- *8: Devices S, Jn\X, Jn\Y, Jn\B, Jn\SB, Jn\W, Jn\SW, I, BL and TR are unsupported.
- *9: Output instructions, program execution instructions, I/O refresh instructions, other convenient instructions, data processing instructions, structured instructions, display instructions, debugging, diagnostic instructions, character string processing instructions, special function instructions, data control instructions, clock instructions, peripheral device instructions and other instructions include unsupported instructions.
- *10: PLC name setting, PLC system setting, PLC file setting, PLC RAS setting, device setting, boot file setting and SFC setting include unsupported items.

1.2 Differences To Debugging with an Actual PLC Connected

The specifications for debugging using the ladder logic test tool (LLT) differ from those for debugging with an actual PLC connected.

The main differences between debugging using the ladder logic test tool (LLT) and debugging with an actual PLC connected are shown below. See Section 2.4 for details.

Item Name	Debugging with an Actual PLC Connected	Debugging with Ladder Logic Test Tool (LLT)	Applicable CPU
Step execution, skip execution, partial execution	Not supported by FX Series CPU functions	Debugging using step execution, skip execution, and partial execution makes debugging operation more efficient.	• FXCPU
Device range check	Operation continues even if the indirect designation by the index register exceeds the device range.	"OPERATION ERROR" occurs when the device range determined by CPU type or parameters is exceeded. (For the device range for a specific CPU type, refer to Appendix 1.)	 ACPU QnACPU FXCPU Motion controller CPU QCPU
Real number range check	Dedicated instructions to handle real numbers allow operation to continue when an illegal value occurs which cannot be evaluated as a real number.	Real number range checks are conducted rigorously. "OPERATION ERROR" is displayed if a value cannot be evaluated as a real number.	 ACPU QnACPU Motion controller CPU QCPU
Number range check	Value 0 is given as a result of "0 divided by 0" by DIV instruction, floating point division, of the A series PLC. No error occurs.	The rigorous number range check can detect an illegal 0 denominator and "OPERATION ERROR" is generated if 0 ÷ 0 is executed.	 ACPU Motion controller CPU QCPU (A mode)
Illegal instruction in a dedicated instruction	The illegal instruction is ignored and operation continues.	The illegal instruction is checked and "INSTRCT CODE ERR." is displayed. Dedicated instructions must be described as blocks. (Example of illegal ladder) M9036 LEDA RAD LEDC D200 LEDC D200 LEDC D200 LEDC D210 LEDR END	 ACPU Motion controller CPU QCPU (A mode)

1. OUTLINE OF LADDER LOGIC TEST TOOL (LLT)

Item Name	Debugging with an Actual PLC Connected	Debugging with Ladder Logic Test Tool (LLT)	Applicable CPU
Time concept	Actual time	As per constant scan setting.	 ACPU QnACPU FXCPU Motion controller CPU QCPU
Supported instructions	All instructions can be used.	Since data refresh instructions, PID control instructions (QnA series, FX series CPUs), etc. cannot be used, they are processed as NOPs. (Refer to Appendix-2 for supported instructions.)	ACPU QnACPU FXCPU Motion controller CPU QCPU
Operating CPU type	According to CPU type used.	Operates as A4UCPU when an A Series CPU is selected, Q4ACPU when QnA Series CPU is selected, FXCPU when FX Series CPU is selected, or A4UCPU when motion controller CPU is selected.	 ACPU QnACPU FXCPU Motion controller CPU QCPU
Special function module (special block)	Supported	Not supported. Only the buffer memory area of a special function module (special block) is supported.	 ACPU QnACPU FXCPU Motion controller CPU QCPU (A-mode)
I/O module	Supported	Not supported	 ACPU QnACPU FXCPU Motion controller CPU QCPU
Network	Supported	Not supported	 ACPU QnACPU FXCPU Motion controller CPU QCPU
Memory cassette capacity	An error occurs in GPPW if data exceeding the memory cassette capacity is written to the PLC.	No error occurs and normal operation continues if data exceeding the memory cassette capacity is written to the PLC.	 ACPU QnACPU Motion controller CPU QCPU
Intelligent function module (intelligent parameters) (Future extension)	Supported	Only the initial setting, automatic refresh setting and buffer memory area are supported.	QCPU (Q mode)

MELSEC

2. SPECIFICATIONS

2.1 Table of Functions

The functions supported by the ladder logic test tool (LLT) are shown below. The functions supported by the ladder logic test tool (LLT) include functions executed from the ladder logic test tool (LLT) menu and functions executed from the GPPW menu.

The Ladder Logic Test Tool simulates the function of the CPU selected at the time of execution of the LLT from the GPPW menu: it supports CPU's of type A, QnA, and FX. Also, when the CPU of the motion controller is selected, the corresponding function of the A Series CPU operates. (Refer to Section 2.4.5(1) for the A series CPU corresponding to the motion controller CPU.)

Also, when the Q series (Q mode) is selected, the Q series CPU functions operate, but when the Q series (A mode) is selected, the A series CPU functions operate as equivalent to those of the A4UCPU.

The functions supported by the ladder logic test tool (LLT) are as indicated in Table 2.1.

See the SW4D5C-GPPW Operating Manual for details about the operation of functions executed from the GPPW menu.

Function		Description	Reference
	Ladder monitor Device monitor	 Monitors the processing status of the ladder logic test tool (LLT) 	
	Device test	 Forcibly write device values to the ladder logic test tool (LLT) during monitoring. 	
	Write to PLC	 Writes parameter file and program file to ladder logic test tool (LLT). 	
–	PLC diagnostics	• Checks the ladder logic test tool (LLT) status and errors.	
Functions executed from the GPPW menu	Skip execution	 Skips program execution in the range between two designated steps. 	See the SW4D5C- GPPW-E (V)
	Partial execution	 Executes the part of the program in a designated step or pointer range. 	Operating Manual
	Step execution	• Executes the sequence program one step at a time.	
	Remote operation	 Operates the ladder logic test tool (LLT) execution status. 	
	Program monitor list	 Monitors the program execution status and number of executions as a table, starts and stops the program execution in the table. 	

Table 2.1 Functions Supported by Ladder Logic Test Tool (LLT)

2. SPECIFICATIONS

Function		Description	Reference
Functions executed from the ladder logic test tool (LLT) menu	I/O system settings	 Simulates the operation of external devices by simple settings. 	See Chapter 4.
	Monitor test	 Conducts testing by monitoring the device memory status. Displaying the ON/OFF chart of the devices. Forcing the devices ON/OFF, and changing present values. 	See Chapter 5.
	Tools	 Saves and reads the device memory and buffer memory. 	See Chapter 6.
	Function equivalent to WDT	 Issues a WDT error if a sequence program is written in such a way that it runs an infinite loop. 	_
	Error detail display function	 Displays detailed error information at occurrence of an error. 	
	Unsupported instruction list display function	 Lists the instructions which are not supported by the ladder logic test tool (LLT) if they are included in a sequence program. 	See Chapter 3.

2. SPECIFICATIONS

2.2 Function List

This section provides the function list of each screen.

(1) Basic screen function list

S	Start	
	Device Memory Monitor	Shows the Device Memory Monitor screen.
	- I/O System Settings	Shows the I/O System Settings screen.
	— I/O System Status	Shows the file name of the data of the I/O system settings being executed.
	Clear I/O Settings	Stops the operation of the I/O system settings being executed.

Tools

— Backup Device Memory	Writes device memory data to a file.
— Backup Buffer Memory	Writes buffer memory data to a file.
- Restore Device Memory	Reads the saved device memory data.
Restore Buffer Memory	Reads the saved buffer memory data.

Help

— About LLT.....Shows the product information.

(2) Device Memory Moni	tor screen function list
Start	
Exit	Closes the Device Memory Monitor screen.
└─ Run	Starts the Timing Chart screen.
Device Memory	
— Bit Device	
Bit device corresponding to CPU	Shows the window of the selected bit device.
Word Device	
Word device corresponding to CPU	Shows the window of the selected word device.
Monitor	
Stort/Stop	Starte/stopp monitor
	Starts/stops monitor.
Monitoring Interval	Changes the monitoring interval.
Display	
	Shows the first page in the active window $*1$.
Previous Page	Shows the preceding page in the active window $*1$.
- Next Page	Shows the next page in the active window $*1$.
— End Page	Shows the last page in the active window $*1$.
— Jump	Shows the specified device and onward in the active window *1.
Value	
Decimal	Shows decimal values in the active window $*1$.
Hexadecimal	Shows hexadecimal values in the active window $*1$.
View	
Sixteen Bit Integer	Shows 16-bit integers in the active window *1.
Thirty Two Bit Integer	Shows 32-bit integers in the active window $*1$.
└── Real	Shows real numbers in the active window $*1$.
*1: Active window: Window which is n	nade operable among several windows.

— New	Opens a new window with the specified device.
— Cascade	Cascades currently open windows.
— Tile	Tiles currently open windows.
Arrange	Arranges windows reduced to icons.
(3) I/O System Settings scre	een function list
— Open File	Reads the saved I/O system settings.
— Save File	Writes the I/O system settings.
- Set Device	Specifies the device to entered.
Exit	Exits from I/O system settings.
(4) Timing Chart function lis	t
Open File	Reads the saved monitor device data.
Open File Save File As	Reads the saved monitor device data.
Open File Save File As Exit	Reads the saved monitor device data. Writes the device data currently monitored. Exits from Timing Chart.
Open File Save File As Exit Device	Reads the saved monitor device data. Writes the device data currently monitored. Exits from Timing Chart.
Open File Save File As Exit Device Enter Device	Reads the saved monitor device data. Writes the device data currently monitored. Exits from Timing Chart. Registers the devices to be monitored.
Open File Save File As Exit Device Enter Device Delete Device	Reads the saved monitor device data. Writes the device data currently monitored. Exits from Timing Chart. Registers the devices to be monitored. Deletes the selected devices.
Open File Save File As Exit Device Enter Device Delete Device List Device	Reads the saved monitor device data. Writes the device data currently monitored. Exits from Timing Chart. Registers the devices to be monitored. Deletes the selected devices. Lists the devices being monitored.
Open File Open File Save File As Exit Device Enter Device Delete Device List Device Property	Reads the saved monitor device data. Writes the device data currently monitored. Exits from Timing Chart. Registers the devices to be monitored. Deletes the selected devices. Lists the devices being monitored. Change the display format of the selected device.
Open File Open File Save File As Exit Device Enter Device Delete Device Delete Device Property Monitor	Reads the saved monitor device data. Writes the device data currently monitored. Exits from Timing Chart. Registers the devices to be monitored. Deletes the selected devices. Lists the devices being monitored. Change the display format of the selected device.

Sampling period......To change the Data accumulation interval.

2.3 Devices and Instructions Supported by the Ladder Logic Test Tool (LLT)

The ladder logic test tool (LLT) for the A Series, QnA Series, FX Series, Q Series and Motion controller CPU functions operates in the following ranges of devices and instructions.

Function Name	СРИ Туре	Device	Instruction
A Series CPU functions	A0J2H, A1FX, A1S(S1), A1SJ, A1SH, A1SJH, A1N, A2C, A2CJ, A2N(S1), A2S(S1), A2SH(S1), A3N, A2A(S1), A3A, A2U(S1), A2US(S1), A2AS(S1), A2AS-S30, A2AS-S60, A2USH-S1 * 1, A3U, A4U	Operates in the device range of the selected CPU type. (See Appendix 1 (1).)	Operates with the instructions supported by the ACPU. (See Appendix 2 (1).)
QnA Series CPU functions	Q2A, Q2AS(H), Q2AS1, Q2AS(H)S1, Q3A, Q4A, Q4AR	Operates in the device range of the selected CPU type. (See Appendix 1 (2).)	Operates with the instructions supported by the QnACPU. (See Appendix 2 (2).)
FX Series CPU functions	FX0(S), FX0N, FX1, FX2(C), FX2N(C)	Operates in the device range of the selected CPU type. (See Appendix 1 (3).)	Operates with the instructions supported by the FXCPU. (See Appendix 2 (3).)
Motion controller CPU functions	A171SH (equivalent to A2SH), A172SH (equivalent to A2SH (S1)), A273UH (S3) (equivalent to A3U)	Operates in the device range of the corresponding ACPU. (See Appendix 1 (1).)	Operates with the instructions supported by the ACPU. (See Appendix 2 (1).) However, motion dedicated instructions (SVST, CHGA, CHGV, CHGT, SFCS, ITP) are not supported. They are not processed.
Q series CPU (A mode) function	Q02-A, Q02H-A, Q06H-A	Operates in the device range of the A4UCPU.	Operates with the instructions supported by the A4UCPU.
Q series CPU (Q mode) function	Q02, Q02H, Q06H, Q12H, Q25H	Operates in the device range of the selected CPU type.	Operates with the instructions supported by the QCPU (Q mode).

*1: Select CPU type of A2USH-S1 when CPU card A80BD-A2USH-S1 is used.

However, some devices and instructions are restricted or are not supported. Unsupported devices and instructions are not processed (NOP). These NOP instructions are shown on the initial screen of the ladder logic test tool (LLT) as unsupported information. (See Section 3.3.)

See Appendix 1 List of Supported Devices and Appendix 2 List of Supported Instructions for details about the devices and instructions supported by the ladder logic test tool (LLT).

POINT

In this manual, the PLC portion of the motion controller is described as a function of the motion controller CPU.

In addition, the A171SH, A172SH, and A273UH(S3) are included in the device/instruction support range of the A2SH, A2SH(S1), and A3U respectively.

2.4 Ladder Logic Test Tool (LLT) Restrictions and Cautions

The restrictions and cautions when debugging with the ladder logic test tool (LLT) are described below.

2.4.1 Restrictions and cautions common to each type of CPU.

(1) Ladder logic test tool (LLT) Processing Time

The ladder logic test tool (LLT) processing time is calculated using 100 ms per scan. The length of each scan becomes the set constant scan time (default = 100 ms).

This is intended to eliminate changes due to computer performance and usercreated sequence programs.

The scan time can be set to a value other than 100 ms by changing the constant scan time setting.

(To change the time, you can use D9020 for the ACPU/QCPU (A mode)/motion controller CPU functions, parameter setting for the QnACPU/QCPU (Q mode) functions, or D8039 for the FXCPU functions.)

(2) About timer count-up

In the ladder logic test tool, the count made by the timer instruction during one scan changes with the constant scan setting and timer speed. At the constant scan setting of 100ms, the 100ms timer counts +1 during one scan and the 10ms timer +10 during one scan. At the constant scan setting of 300ms, the 100ms timer counts +3 during one scan and the 10ms timer +30 during one scan, and at the constant scan setting of 10ms, the 100ms timer counts +1 during 10 scans and the 10ms timer +1 during one scan.

(3) Restarting the ladder logic test tool (LLT) When restarting the ladder logic test tool (LLT) immediately after ending it, it may take longer than the usual restarting time.

(4) Device Range Checks using I/O System Settings

Appendix 3 shows a table of devices supported by I/O system settings. The usable device ranges depend on the selected CPU model and parameter setting range. (For details, refer to Appendix-1.)

(5) Interrupt Programs

Interrupt programs are not supported. Any sequence program created is not executed.

(6) Floating Decimal Point

Rounding errors can occur in the results of instructions using the floating decimal point. Therefore, the results may differ from calculations when a CPU is connected.

(7) Read from PLC, Compare with PLC Not supported by the ladder logic test tool (LLT).

(8) Comments

Not supported by the ladder logic test tool (LLT).

(9) LED Reset Button

The LED display is cleared when the LED reset button on the initial window is clicked. However, the display immediately reappears if the cause of the error has not been removed, so it appears that the LED display is not reset when the button is clicked.

(10) Automatic Writing of the Ladder Logic Test Tool (LLT)

Parameters and sequence programs are written when the ladder logic test tool (LLT) is started up.

As the file register and device initial values are not automatically written, write them to the ladder logic test tool (LLT) using write to PLC.

(If you do not perform Write to PLC on GPPW of SW0D5—-GPPW-E(V), the file register/device initial values used are the values which were automatically retained when the ladder logic test tool (LLT) was ended last time.)

(11) Restrictions applied to Combinations with GPPW

The following table shows the restrictions that are applied when the LLT is used in combination with the GPPW.

		GPPW		
		SW2D5C/F-	SW3D5C-	SW4D5C-
		GPPW-E (V)	GPPW-E (V)	GPPW-E (V)
	SW2D5C/F- LLT-E (V)	0	∆ *1	∆ *1 *3
Ladder Logic Test Tool (LLT)	SW3D5C- LLT-E (V)	∆ *2	0	∆ *3
	SW4D5C- LLT-E (V)	∆ *2 *4	∆ *4	0

O: No restrictions

 \triangle : Partial restrictions

- *1: Buffer memory monitor for the ladder logic test tool (LLT) can not be executed from GPPW, when A Series CPU is selected.
- *2: Can not select buffer memory monitor from GPPW, when the ladder logic test tool (LLT) for A Series CPU is running.
- *3: The Q series CPU (Q mode, A mode) ladder logic test tool (LLT) cannot be started from GPPW.
- *4: GPPW does not support the Q series CPU (Q mode, A mode).

Note

It is not possible to install an English version of the ladder logic test tool (LLT) when a Japanese version GPPW is already installed.

(12) Task Bar Settings

If Auto Hide is set in the Windows95/98 task bar settings, the task bar is hidden and not displayed at the bottom of the screen if the GPPW window is displayed at its maximum size and the ladder logic test tool (LLT) initial window is active. The task bar is displayed when the GPPW window is reduced or the GPPW window is set active.

(13) About device range check

If the device range is exceeded in indirect designation using the index register, "OPERATION ERROR" occurs in the ladder logic test tool (LLT).

(14) About real number range check

The ladder logic test tool (LLT) checks the real number range strictly. If any value cannot be evaluated as a real number, "OPERATION ERROR" occurs.

(15) About supported instructions

In the ladder logic test tool (LLT), some instructions are unusable and processed as NOPs.

(Refer to Appendix-2 for the supported instructions.)

(16) About operating CPU types

When selected, the A series CPU/Q series CPU (A mode) operates as the A4UCPU, the QnA series CPU as the Q4ACPU, the FX series CPU as the FXCPU, the motion controller CPU as the A4UCPU, and the Q series CPU (Q mode) as the Q25HCPU.

(17) About I/O modules

The ladder logic test tool (LLT) does not support I/O modules.

(18) About networks

The ladder logic test tool (LLT) does not support networks.

2.4.2 Restrictions and cautions for the A series CPU functions

(1) Special function module Compatibility

The ladder logic test tool (LLT) does not support the special function modules. The special function module buffer memory area capacity is 16 k points \times 64 units. It is possible to save to and read from this area but any other access results in an error.

(2) Saving To and Reading From Buffer Memory

Make I/O assignments with GPPW before saving or reading the special function module buffer memory. (See the SW4D5C-GPPW Operating Manual.) It is not possible to save to and read from the buffer area unless I/O assignments are made.

(3) Enabling and Disabling the Parameter Setting Items Some GPPW parameter settings are disabled by the ladder logic test tool (LLT) even if data is set for them.

The settings disabled by the ladder logic test tool (LLT) are shown below.

Parameter		Setting
	Memory capacity	Disabled other than Sequence and "File register" of "program capacity".
	PLC system	"Output modes except for STOP→RUN" are disabled.
		 "Annunciator display mode" is disabled.
PLC PL PL	PLC RAS	Only Computation error and Special Unit access in the "operating mode when
		there is an error" are enabled.
	I/O assignment	All valid.
	Device	"Latch Start" is disabled.
Network Parameter		All disabled.

(4) Microcomputer Programs

Not supported by the ladder logic test tool (LLT).

(5) PLC Memory Clear

Execute to clear all user data written to the ladder logic test tool (LLT) and initialize.

Also execute this function when unstable logic test function (LLT) operation occurs.

(6) A1FXCPU Built-in Functions

If the A1FXCPU type CPU is selected, the A1FXCPU I/O signals become general I/O signals during debugging with the ladder logic test tool (LLT). Consequently, the A1FX functions are identical to the I/O module functions.

- (7) About numeric value range check Checking the numeric value range strictly, the ladder logic test tool (LLT) detects any illegal operation whose divisor is 0. Execution of 0 ÷ 0 will result in "OPERATION ERROR".
- (8) About illegal instructions in dedicated instructions The ladder logic test tool (LLT) checks the dedicated instructions for illegal instructions and displays "INSTRUCT CODE ERR.", if any.
- (9) About special function module (special function block) The ladder logic test tool (LLT) supports only the buffer memory area of a special function module (special function block).
- (10) About memory cassette capacity

The ladder logic test tool (LLT) has no memory cassette capacity. A lot of data which would result in an excess of capacity on the actual device will not result in an error and will be written properly.

2.4.3 Restrictions and cautions for the QnA series CPU functions

(1) Special Function Module Compatibility

The ladder logic test tool (LLT) does not support the special function modules. The special function module buffer memory area capacity is 16 k points \times 64 modules. It is possible to save to and read from this area but any other access results in an error.

(2) Saving To and Reading From Buffer Memory

Make I/O assignments with GPPW before saving or reading the special function module buffer memory. (See the SW4D5C-GPPW Operating Manual.) It is not possible to save to and read from the buffer area unless I/O assignments are made.

(3) Enabling and Disabling the Parameter Setting Items Some GPPW parameter settings are disabled by the ladder logic test tool (LLT) even if data is set for them.

Parameter Setting PLC name All disabled. PLC system Disabled, except for "Output mode at STOP to RUN" and "Common pointer No." • The corresponding memory for the "file register" is disabled. • The "comment file used in a command" is disabled. PLC file • The corresponding memory for the "device initial value" is disabled. • The corresponding memory for the "file for local device" is disabled. • "Error Check" is disabled. PLC • Only Computation error and Special unit access error in the "operating mode PLC RAS when there is an error" are enabled. parameter "Annunciator display mode" is disabled. • "Break down history" and "Lowspeed program execution time" is disabled. I/O assignment "Standard settings" (base, Power supply unit, Increase cable) are all disabled. "Latch Start" is disabled. Device All valid. Program Boot file All disabled. SFC All disabled. Network Parameter All disabled.

The settings disabled by the ladder logic test tool (LLT) are shown below.

(4) Execution of Low-speed Programs

Regardless of the constant scan setting or setting of the low-speed program execution time, the ladder logic test tool (LLT) always executes the low-speed programs after the scan execution programs.

The program execution sequence is show below. (This sequence is identical during step operation.)

During each scan, all scan programs are executed before one low-speed type program is executed. Consequently, if N low-speed programs are set, N scans are required to execute them all.

POINT

Since a low-speed program is always completed within one scan, the monitor value of SM510 is always OFF.

- (5) Device Memory Monitor Device Range Check T31744 to T32767, SB800 to SB7FFF, and SW800 to SW7FFF are used by the system and are unavailable for monitoring or testing.
- (6) Function Register (FD)

The ladder logic test tool (LLT) does not support the bit designation and indirect designation of the function register (FD).

Also, the function register (FD) monitor cannot be executed from the ladder logic test tool (LLT) menu. Execute it from the GPPW menu.

- (7) TTMR Instruction Restrictions A present value cannot be changed during TTMR instruction execution.
- (8) I/O System Setting Device Range Check SB800 to SB7FFF and SW800 to SW7FFFare used by the system and cannot be assigned.
- (9) SFC Programs Not supported by the ladder logic test tool (LLT).
- (10) PLC Memory Format

Execute to clear all user data written to the ladder logic test tool (LLT) and initialize.

Also execute this function when unstable logic test function (LLT) operation occurs.

(11) "MISSING END INS" Errors

If a buffer register (Un\G) with no I/O assignment is used for a program or status setting, "MISSING END INS" is displayed on the LED display. After correctly setting the I/O assignments, write the parameters to the ladder

logic test tool (LLT).

(12) About special function module (special function block)

The ladder logic test tool (LLT) supports only the buffer memory area of a special function module (special function +block).

(13) About built-in RAM/memory cassette capacity

The ladder logic test tool (LLT) has no built-in RAM/memory cassette capacity. A lot of data which would result in an excess of capacity on the actual device will not result in an error and will be written properly.

2.4.4 Restrictions and cautions for the FX series CPU functions

(1) CPU Type Selection and FXCPU Operation

The ladder logic test tool (LLT) for the FX Series CPU functions operate according to the CPU functions and device range of the selected CPU. Application instructions not supported by the selected CPU operate with the ladder logic test tool (LLT).

In cases where the sequence program may contain instructions not supported by the actual PLC due to conversion of a program for a higher model to a program for a lower model or due to input in the list mode, a program error occurs when the sequence program is written to the actual PLC, even if the program runs with the ladder logic test tool (LLT).

For example, the FX₀, FX₀s and FX₀N PLCs do not support pulse-execution application instructions, but these instructions run with the ladder logic test tool (LLT). Even so, a program error occurs when this program is written to the actual PLC because it contains non-supported instructions.

(2) STOP \rightarrow RUN Program Check

A program error is detected by the STOP \rightarrow RUN program check only if MC/ MCR exists in the STL instruction or if no RET instruction is input for a STL instruction.

No other items are detected by the STOP \rightarrow RUN program check. Therefore, use the GPPW program check functions in advance to check for these other errors.

(3) Program Memory Capacity

The maximum step capacity for each model is set.

(4) Watchdog Timer

The watchdog timer (D8000) operates every 200 ms for all CPUs. It can be rewritten but the written value has no effect on its operation.

(5) Debugging

The skip execution, partial execution, and step execution functions are only valid when using the ladder logic test tool (LLT). They cannot be used when an actual PLC is connected.

(6) Buffer Memory Monitor

The special extension device buffer memory in the ladder logic test tool (LLT) operates as general registers which allow reading and writing using FROM/TO instructions. This memory does not posses any special functions from the special extension devices.

(7) Analog Volume

The data registers (D8013, D8030, and D8031) storing the analog volume values for the FX₀, FX₀s and FX₀N PLCs operate as normal data registers. Use the GPPW device test functions to write values between 0 and 255 to these registers for testing.

(8) SORT Instruction

The SORT instruction is executed in the actual PLC over multiple scans. However, it is executed completely in a single scan in the ladder logic test tool (LLT) and M8029 (complete flag) operates immediately.

(9) SFC Programs

Testing of SFC programs for the FX PLC is possible because they are displayed as a ladder or list by the step ladder instructions (STL, RET) supported by the ladder logic test tool (LLT).

(10) Handling Keep Devices

Contents are maintained at a logic test function (LLT) STOP. Contents are cleared when the ladder logic test tool (LLT) is quit.

(11) Handling Non-Keep Devices

Contents are cleared at a logic test function (LLT) STOP or when the ladder logic test tool (LLT) are quit.

(12) Memory Clear

Execute to clear all user data written to the ladder logic test tool (LLT) and initialize.

Also execute this function when unstable logic test function (LLT) operation occurs.

(13) Quick startup of the ladder logic test tool (LLT) with the FX Series CPU

When the ladder logic test tool (LLT) is used combining SW4D5C-LLT-E and SW4D5C-GPPW-E, the GPPW executes quick startup of the ladder logic test tool (LLT). When other combinations are used, it starts up the LLT at normal speed.

(14) About step execution, skip run and partial run Compatible with step execution, skip run and partial run, the ladder logic test tool (LLT) ensures more efficient debugging.

(15) About special function module (special function block) The ladder logic test tool (LLT) supports only the buffer memory area of a special function module (special function block).

2.4.5 Restrictions and cautions for the Motion controller CPU functions

(1) Motion controller CPU Type Selection and Applicable CPU Type The range of devices or instructions of a motion controller CPU are those of the applicable CPU.

The table below shows the types of CPU applicable to the motion controller.

Motion Controller CPU	Applicable CPU
A171SH	A2SH
A172SH	A2SH (S1)
A273UH (S3)	A3U

(2) Motion dedicated instructions

The ladder logic test tool (LLT) does not support motion dedicated instructions. Thus, when an attempt is made to use motion dedicated instructions on the ladder logic test tool (LLT), nothing will be processed. (NOP)

Motion dedicated instructions are only the following six; SVST, CHGA, CHGV, CHGT, SFCS, and ITP.

REMARK

Any restrictions and cautions other than the ones described above are the same as those for the A Series CPU functions. For the restrictions and cautions for the A Series CPU functions, refer to 2.4.2.

For details of the motion controller CPU, refer to the Motion Controller CPU User's Manual.

2.4.6 Restrictions and precautions for the Q series CPU functions

1) A mode

For the Q series CPU (A mode) functions, the A series CPU functions perform as equivalent to those of the A4U, and therefore, refer to the restrictions on the A series CPU.

2) Q mode

- (1) Compatibility with the special function module The ladder logic test tool (LLT) does not support the special function module. However, it has the area of 64k points×64 modules for the buffer memory of the special function module. This area can be accessed, but access beyond that will result in an error.
- (2) About saving/reading the buffer memory data When saving/reading the buffer memory data of the special function module, always make I/O assignment on GPPW. (Refer to the SW4D5C-GPPW-E(V) Operating Manual.) Without I/O assignment, buffer memory data cannot be saved/read.

(3) About validity of parameter setting items

Among the parameter setting items of GPPW, there are setting items which will be invalid for the ladder logic test tool (LLT) if their data have been set. The following setting items are invalid for the ladder logic test tool (LLT).

Parameters		Setting Item
	PLC name setting	All invalid.
	PLC system	Items except "timer time limit setting", "STOP-RUN/output mode" and "common
	setting	pointer No." are invalid.
		 "Target memory" of "file register" is invalid.
	DI C file actting	 "Comment file used for instructions" is invalid.
	PLC me seuing	 "Target memory" of "device initial value" is invalid.
		 "Target memory" of "file for local devices" is invalid.
		 "Error check" is invalid.
PLC	PLC RAS setting	• Items other than "operation error" and "special function module access error" in
parameter		"error-time operation mode" are invalid.
		 "Fault history" and "low-speed program running time" are invalid.
	I/O assignment	 "Model", "switch setting" and "detail setting" of "I/O assignment" are invalid.
		 "Basic setting" (base, power supply module, extension cable) is invalid.
	Device setting	"Latch range" is invalid.
	Due anno 11 anti-	 "Comment" of "file using method setting" is invalid.
	Program setting	 "I/O refresh setting" is invalid.
	Boot file setting	All invalid.
	SFC setting	All invalid.
Network parameters		All invalid.

(4) Execution of Low-speed Programs

Regardless of the constant scan setting or setting of the low-speed program execution time, the ladder logic test tool (LLT) always executes the low-speed programs after the scan execution programs.

The program execution sequence is show below. (This sequence is identical during step operation.)

During each scan, all scan programs are executed before one low-speed type program is executed. Consequently, if N low-speed programs are set, N scans are required to execute them all.

POINT

Since a low-speed program is always completed within one scan, the monitor value of SM510 is always OFF.

(5) About operation of cyclic execution program

A cyclic program judges whether it can run or not by measuring time after the end of a scan execution type and a low-speed execution type. The timer (T) in the cyclic execution program of the ladder logic test tool operates in a manner similar to the timer of the scan execution type. The following timing chart shows the LLT processing timing at the scan time setting of 100 milliseconds and the cyclic program setting of every 200 milliseconds.

(6) About function register (FD)

The ladder logic test tool (LLT) does not support the bit designation and indirect designation of the function register (FD).

Also, the function register (FD) cannot be monitored from the ladder logic test tool (LLT) menu. Monitor it from the GPPW menu.

- (7) About restrictions on TTMR instruction During execution of the TTMR instruction, the current value cannot be changed.
- (8) About SFC program

Not supported by the ladder logic test tool (LLT).

(9) About PLC memory format

Execute to clear all user data written to the ladder logic test tool (LLT) and initialize.

Also execute this function when unstable logic test function (LLT) operation occurs.

(10) "MISSING END INS" Errors

If a buffer register (Un\G) with no I/O assignment is used for a program or status setting, "MISSING END INS" is displayed on the LED display.

After correctly setting the I/O assignments, write the parameters to the ladder logic test tool (LLT).

(11) About built-in RAM/memory cassette capacity

The ladder logic test tool (LLT) has no built-in RAM/memory cassette capacity. A lot of data which would result in an excess of capacity on the actual device will not result in an error and will be written properly.

(12) About intelligent function module

The ladder logic test tool (LLT) supports only the initial value setting, automatic refresh setting and buffer memory area of the intelligent function module. (future extension)
2.5 Ladder Logic Test Tool (LLT) Safety and Handling Precautions

The safety and handling precautions for the ladder logic test tool (LLT) are described below.

- The ladder logic test tool (LLT) simulates the actual PLC to debug sequence programs. However, the correct operation of a debugged sequence program cannot be guaranteed.
 After debugging with the ladder logic test tool (LLT), before running the program in an actual application, connect a actual PLC and conduct a normal debugging operation.
- (2) The calculated results may differ from actual operation because the ladder logic test tool (LLT) does not access the I/O modules or special function modules and do not support some instructions and devices. After debugging with the ladder logic test tool (LLT), before running the program in an actual application, connect an actual PLC and conduct a normal debugging operation.

3. COMMON OPERATIONS FOR THE LADDER LOGIC **TEST TOOL (LLT)**

3.1 Procedure from Installation to Debugging

This section describes the procedures from installing the ladder logic test tool (LLT) to debugging a sequence program.

(To next page)

To debug the program again, repeat Procedures 5 to 8.

3.2 GPPW Operations before Debugging

This section describes the GPPW operations required before debugging with the ladder logic test tool (LLT).

Conduct the operations described below before debugging a program with the ladder logic test tool (LLT).

(1) Make the Project to Create the Sequence Program.

To create a new project, select [Project] \rightarrow [New project] from the GPPW menus and make the required settings.

To read an existing project, select [Project] \rightarrow [Open project] from the GPPW menus and select the project.

ME	LSEC	C serie	es GPP (Unse	et project	:) - [LD	(Edit m	ode)	MAI	N 35	Step]
Pro	oject	<u>E</u> dit	Eind/Replace	Convert	⊻iew	<u>O</u> nline	<u>D</u> iag	nostics	<u>T</u> ools	<u>₩</u> indo
\leq	<u>N</u> ew <u>O</u> per <u>Close</u> <u>Save</u> Save	projec n proje e proje e e <u>a</u> s	ct	Ctrl+N Ctrl+O Ctrl+S			실 참 및 <u>-</u> _			
	<u>D</u> ele Ve <u>r</u> ifj Copy	te proj y ł	ect					915 15		
	<u>E</u> dit l	Data		•						
	C <u>h</u> ar	nge PL	.C type							

- (2) Create the Sequence Program.
- (3) On the GPPW side, make parameter settings for I/O assignment (for A/QnA/Q series CPU functions), program setting (for QnA series/Q series (Q mode) CPU functions), etc.

POINTS

- (1) Always do the program settings for the QnA series/Q series CPU function. If you do not make the program settings and the GPPW is of version later than SW1D5_-GPPW-E(V) the following will occur.
 - 1) The ladder sequence (list) of the active window of GPPW will be written.
 - 2) The sequence program will not be written, if the active window is not a ladder (list) window or if there are no active windows.

(In case of GPPW of SW0D5_-GPPW-E, the sequence program will not be written if you do not make the program settings.)

(4) Select the [Tools] → [Start ladder logic test] GPPW menu items to start the ladder logic test tool (LLT). An initial window as shown below is displayed. The sequence program and parameters are automatically written to the ladder logic test tool (LLT) when the ladder logic test tool (LLT) are started by GPPW. Offline debugging of the sequence program using the ladder logic test tool (LLT) is now possible.

3.3 Description of the Initial Window Display

A ladder logic test tool (LLT) initial window as shown below is displayed when the ladder logic test tool (LLT) is started.

This section describes the items displayed in the ladder logic test tool (LLT) initial window.

Number	Name	Description
1)	CPU type	Displays the currently selected CPU type.
2)	LED Indicators	 Can display up to 16 characters. The indicator display is equivalent to the display of CPU operation errors.
3)	Operation Status LEDs	 RUN/ERROR: Valid for all of the QnA, A, FX, Q series CPU and motion controller CPU functions. USER : Appears only for the QnA series/Q series (Q mode) CPU functions.
4)	Start	Enables the selection of [Device Memory Monitor], [I/O System Settings], [I/O System Status], and [Clear I/O Settings].
5)	Tools	Use the Tools menu to execute the tool functions. See Section 6 Tool Functions.
6)	Help	Displays the ladder logic test tool (LLT) licensee name and software version.
7)	Switch Display and Settings	Displays the execution status of the ladder logic test tool (LLT). Click on the radio buttons to change the execution status.
8)	INDICATOR RESET button	Click to clear the LED display.
9)	RESET button	 Click to reset the ladder logic test tool (LLT) Displayed only for the A, QnA and Motion controller Series CPU functions.
10)	Unsupported information indicator lamp	 Displayed only when unsupported instructions or devices for the ladder logic test tool (LLT) is found. Double clicking this indicator will display the unsupported instructions that have been changed to NOP instructions and their steps.
11)	Error advance display button	Clicking this button will display the descriptions of issued errors, error steps, and the name of files in which the error is issued. (The names of error files are displayed only when using the QnA Series/Q series (Q mode) CPU function.)
12)	I/O system setting LED	 LED lights up during execution of I/O system setting. Double clicking this will show the contents of current I/O system settings.

3.4 Screen Operations

3.4.1 Basic screen operations

This section explains how to operate the basic screen.

(1) Start

Clicking [Start] on the initial screen shows the drop-down menu. Choose the menu item to be executed.

When starting any of the tool functions, click [Tools] and choose the menu item to be executed.

1) Starting Device Memory Monitor

Choosing [Device Memory Monitor] from the drop-down menu of [Start] starts Device Memory Monitor.

Device Memory Monitor dialog box

 Starting I/O System Settings Choosing [I/O System Settings] from the drop-down menu of [Start] starts I/O System Settings.

ADDEL	R LOGIC TEST T ools Help ce Memory Monitor System Settings System Status r I/O Settings		ТВ	AP	 Click [I/O Syster 	m Settin	gs]
No.	Condition	Ti	imer	Input (Simu	lation Device)	Status	_
1	© A	ND R	X10ms		ON OFF	🗖 Enable	
2	C 0	ND 1	×10ms		ON OFF	🖵 Enable	
3	• A	ND R	×10ms		ON OFF	🗖 Enable	
4	• A	ND R	X10ms		ON OFF	🗖 Enable	
5	C 0	ND 1	×10ms		ON OFF	🗖 Enable	.
ок	Exit		(lear(C)				

I/O System Settings dialog box

3) I/O System Status

Choosing [I/O System Status] from the drop-down menu of [Start] displays the I/O System Status dialog box.

I/O System Status dialog box

4) Clear I/O Settings

Choosing [Clear I/O Settings] from the drop-down menu of [Start] displays the Clear confirmation dialog box.

Clear confirmation dialog box

5) Backup Device Memory

Choosing [Backup Device Memory] from the drop-down menu of [Tools] displays the confirmation dialog box.

Confirmation dialog box

6) Backup Buffer Memory Choosing [Backup Buffer Memory] from the drop-down menu of [Tools] displays the confirmation dialog box.

7) Restore Device Memory

Choosing [Restore Device Memory] from the drop-down menu of [Tools] displays the Restore Device Memory dialog box.

	ADDER LO art <u>T</u> ools Ba Ba Re He	GIC TEST Help ckup Device skup <u>B</u>uffer N store De <u>v</u> ice store B <u>u</u> ffer N	TOOL Memory Aemory Memory	TBAP	Click	re Device Memory
RE	STORE DEVIC	E MEMORY				×
		₽ Y	M M	I F	🗹 B	
	🔽 Sp.M	₽ Z/V	A 🗹	Τ	₽ C	
	D 🖸	₩ Ŋ	🔽 Sp.D	⊠ R		
	CLEAR	SELECT ALL		OK	CANCEL	

Restore Device Memory dialog box

(Dialog box which appears when A series/Q series (A mode)/motion controller CPU is selected)

8) Restore Buffer Memory

Choosing [Restore Buffer Memory] from the drop-down menu of [Tools] displays the Restore Buffer Memory dialog box.

fer Memory]
CE

Restore Buffer Memory dialog box

(Dialog box which appears when A/QnA/Q series/motion controller CPU is selected)

9) About LLT

Choosing [About LLT] from the drop-down menu of [Help] displays About LLT.

About LLT dialog box

- (2) Ending the ladder logic test tool (LLT)
 - 1) Choose [End ladder logic test] of GPPW.

2) As the dialog box appears, click the [OK] button.

3.4.2 Device Memory Monitor operations

This section describes how to operate Device Memory Monitor.

1) Exit

Choosing [Exit] from the drop-down menu of [Start] ends Device Memory Monitor.

2) Running Timing Chart

Choosing [Run] from the drop-down menu of [Timing Chart] starts Timing Chart.

Timing Chart dialog box

3) Device window

Choosing [Bit Device] or [Word Device] from the drop-down menu of [Device] and selecting the device name you want to open opens the device window.

	Device Memory	Window							ial daviaa
	<u>Device Manage</u> <u>Bit Device</u> <u>Word Device</u>	Window Window M L V V SB B SM T(Conta ST(Conta	ct) act) ct)					CI ([>	ick device nar (] in this case
1: F2: N	EW F3:	F4:	<u>F5:</u> F1); F7:	F8;	F9:	F10:		
	-009F	0020	0030	0040	0050	0.000	0070	0080	
0000	0010	0020	0030	0040	0050	0060	0070	0081	0091
0002	0012	0022	0032	0042	0052	0062	0072	0082	0092
0003	0013	0023	0033	0043	0053	0063	0073	0083	0093
0004	0014	0024	0034	0044	0054	0064	0074	0084	0094
0005	0015	0025	0035	0045	0055	0065	0075	0085	0095
0006	0016	0026	0036	0046	0056	0066	0076	0086	0096
0007	0017	0027	0037	0047	0057	0067	0077	0087	0097
0008	0018	0028	0038	0048	0058	0068	0078	0088	0098
0009	0019	0029	0039	0049	0059	0069	0079	0089	0099
000A	001A	002A	003A	004A	005A	006A	007A	008A	009A
	001B	002B	003B	004B	005B	006B	007B	008B	009B
000B		0000	0020	004C	005C	006C	007C	008C	009C
000B 000C	001C	0020	0030						
000B 000C 000D	001C 001D	002C 002D	003C	004D	005D	006D	007D	008D	009D
000B 000C 000D 000E	001C 001D 001E	002C 002D 002E	003D 003E	004D 004E	005D 005E	006D 006E	007D 007E	008D 008E	009D 009E
000B 000C 000D 000E 000F	001C 001D 001E 001F	002C 002D 002E 002F	003D 003E 003F	004D 004E 004F	005D 005E 005F	006D 006E 006F	007D 007E 007F	008D 008E 008F	009D 009E 009F 🚽

4) Monitor Start/Stop

Choosing [Start/Stop] from the drop-down menu of [Monitor] starts/stops monitoring.

(Current status: Monitoring \rightarrow Stop, Current status: Monitor Stop \rightarrow Start)

5) Monitoring Interval

Choosing [Monitoring Interval] from the drop-down menu of [Monitor] displays the Monitoring Interval dialog box.

Monitoring Speed dialog box

6) Starting Page display

Choosing [Starting Page] from the drop-down menu of [Display] shows the first page in the front device window.

(This page cannot be chosen when the first page is being displayed.)

7) Previous Page display

Choosing [Previous Page] from the drop-down menu of [Display] shows the preceding page in the front device window.

(This page cannot be chosen when the first page is being displayed.)

DEVICE MEMORY MONITOR		
Start Timing Chart Device Memory M	onitor Dis <u>p</u> lay <u>W</u> indow	
	Starting Page Previous Page PageUp <u>Next Page PageDown</u>	Click [Previous Page Pageup]
🚇 X 00A0-013F	End Page	
	Jump[J] F	9

8) Next Page display

Choosing [Next Page] from the drop-down menu of [Display] shows the next page in the front device window.

(This page cannot be chosen when the last page is being displayed.)

9) End Page display

Choosing [End Page] from the drop-down menu of [Display] shows the last page in the front device window.

(This page cannot be chosen when the last page is being displayed.)

10) Jump

Choosing [Jump] from the drop-down menu of [Display] shows the Jump dialog box.

Jump dialog box

11) Decimal/Hexadecimal display

Choosing [Value] and then [Decimal] or [Hexadecimal] from the drop-down menu of [Display] shows decimal/hexadecimal values in the front device window.

(This display cannot be selected when the front window shows the bit type.)

12) Sixteen Bit Integer/Thirty Two Bit Integer/Real display

Choosing [View] and then [Sixteen Bit Integer], [Thirty Two Bit Integer] or [Real] from the drop-down menu of [Display] shows 16-bit integers/32-bit integers/real numbers in the front device window.

(This display cannot be selected when the front window shows the bit type.)

13) Opening new window

Choosing [New] from the drop-down menu of [Window] shows the Input dialog box.

14) Cascade

Choosing [Cascade] from the drop-down menu of [Window] cascades the open device windows.

15) Tile

Choosing [Tile] from the drop-down menu of [Window] tiles the open device windows.

I	DEVICE MEMORY MONITOR	
	$\underline{S} tart \underline{T} iming \ Chart \underline{D} evice \ Memory \underline{M} onitor Display$	Window
1	- View	<u>N</u> ew F2
I	🕨 🏲 🖸 🙃 16 Bit Integer	
I		Lile Click [Title]
		Arrange
1	🖨 D 0-49	✓ <u>1</u> D 0-49

16) Arrange

Choosing [Arrange] from the drop-down menu of [Window] aligns the windows reduced to icons.

DEVICE MEMORY MONITOR	
<u>Start</u> <u>Timing Chart</u> <u>Device Memory</u> <u>Monitor</u> Dis <u>p</u>	ay <u>W</u> indow
View C 16 Bit Integer	New F2 C Cascade Re Tile
👰 D 0- 49	✓ 1 D 0-49

3.4.3 I/O system settings operations

This section explains how to operate I/O System Settings.

1) Open File

Choosing [Open File] from the drop-down menu of [Settings] shows the Open I/O System File dialog box.

T(Settings Den File T Save File SY Set Devic JN Egit	M SETTINGS	- Click [Open File]			
Open 1/O Sy Look in:	rstem File			?	×
File <u>n</u> ame: Files of <u>typ</u> e:	Text files(*.TXT)		•	<u>O</u> pen Cancel]

Open I/O System File dialog box

2) Save File

Choosing [Save File] from the drop-down menu of [Settings] shows the Save I/O System File As dialog box.

Save I/O System File As dialog box

3) Set Device

Choosing [Set Device] from the drop-down menu of [Settings] shows the Device Settings dialog box.

Device Settings dialog box

3.4.4 Timing chart operations

This section describes how to operate Timing Chart.

1) Open File

Choosing [Open File] from the drop-down menu of [File] shows the Open Device Entry File dialog box.

<u>T</u> iming Chart <u>I</u>	Device Memory	<u>W</u> indow			
Timin <u>File Des</u> <u>O</u> pen <u>Save</u> <u>E</u> xit	g Chart vice Monitor File File tor	• Dev • . -10	—— Click [Open	File]	
	Ļ				
Open Devi	ice Entry Fil	е			? ×
Look jn:	🔄 Data		•	t d	* 0-0- 0-0-
File <u>n</u> ame:					<u>O</u> pen
Files of type	e: Device B	Entry File(*.mo	n)	•	Cancel

Open Device Entry File dialog box

2) Save File As

Choosing [Save File As] from the drop-down menu of [File] shows the Save Device Entry File As dialog box.

Save Device Entry File As dialog box

3) Exit

Choosing [Exit] from the drop-down menu of [File] exits Timing Chart.

4) Enter Device

Choosing [Enter Device] from the drop-down menu of [Device] shows the Device Entry dialog box.

ming chart <u>D</u> evice Memory <u>wi</u> ndow	
Timing Chart	
Enter Device F2	Click [Enter Device]
Belete Device Del	
List Device Shift+F2 Auto	
Eroperty p -9	
÷.	
🕲 Device Entry 🛛 🛛	
Device	
Display Format	
Decimal	
View	
16 Dà Integer	
Enter Cancel	

Device Entry dialog box

5) Delete Device

Choosing [Delete Device] from the drop-down menu of [Device] deletes the device being selected.

6) List Device

Choosing [List Device] from the drop-down menu of [Device] shows the Device List dialog box.

Device List dialog box

7) Property

Choosing [Property] from the drop-down menu of [Device] shows the Property dialog box.

Property dialog box

8) Monitor Start/Stop

Choosing [Start/Stop] from the drop-down menu of [Monitor] starts/stops monitoring.

(Current status: Monitoring \rightarrow Stop, Current status: Monitor stop \rightarrow Start)

9) Sampling Period

Choosing [Sampling Period] from the drop-down menu of [Monitor] shows the Set Sampling Period dialog box.

🕀 Timing Chart	
<u>File Device Monitor</u>	
Start/Stop F3	
Sampling Period	→ Click [Sampling Period]
Ţ	
🚯 Set Sampling Period 🛛 🗵	
Data Accumulation Interval 10 Scan(s) (1 To 20)	
OK Cancel	

Set Sampling Period dialog box

4. SIMULATION OF EXTERNAL DEVICE OPERATION ---I/O SYSTEM SETTING FUNCTIONS

The I/O system setting functions allow simulation of the operation of external devices just by making simple settings.

In conventional debugging, a debugging sequence program was created to simulate the operation of the external devices.

Using the I/O system setting functions, the operation of the external devices can be automatically simulated without the requirement to create a special debugging sequence program.

(1) Differences between Conventional Debugging and Debugging with the I/O System Setting Functions

A comparison between conventional debugging with an actual PLC connected and debugging using the I/O system setting functions is shown below.

(a) Conventional Debugging

The program must be modified as follows for debugging:

- Add a debugging sequence program to simulate operation of the external devices.
- As an input (X) can be turned ON/OFF only with an external device connected to the I/O unit, modify the program by changing X0 → M0, X1 → M1, etc. to conduct debugging with no external device connected.

(b) Debugging using the I/O System Settings

The I/O system setting function allows sequence program settings and changes to be made for debugging from the setting window. It is unnecessary to add a sequence program. It is not necessary to rewrite the devices (X0 \rightarrow M0) as the inputs (X) can be directly turned ON/OFF from GPPW.

4

4.1 Simulation with the I/O System Setting Functions

(1) Setting

[Operation Procedure]

Select [Start] \rightarrow [I/O system settings] from the initial window.

[Setting Window]

Make the settings below in the I/O system dialog box.

[Description of the Settings]

1) No.

The number of the setting in the I/O system setting dialog box. Up to 100 settings can be made.

2) Condition

Designates the input conditions from the ladder logic test tool (LLT). The input conditions can be designated as a bit device or a word device. For a bit device, the designated condition is ON/OFF. For a word device, the designated condition is a comparison (=, <>, <, >, <=, >=) with a constant or another word device.

<Sample designations>

 Bit device
 : X0 = OFF, M10 = ON

 Word device
 : D5<20, D15<>5, D20=2, D25>=10, D0=D50

POINT

Index representation (eg. D0Z0), representation of a word device in bits form (eg. D0, 0) , and sets of bit device representation (eg. K4X0) are not allowed in the Condition area.

To make a relational condition, specify AND/OR operators by selecting the option buttons.

- AND......The condition is fulfilled if both designated conditions are achieved. Otherwise, the condition is not fulfilled.
- OR..... The condition is fulfilled if one or both of the designated conditions are achieved.

The condition is not fulfilled if neither designated condition is achieved.

Input

Enter the condition directly into the Condition area or double-click on the Condition area to display the following dialog box. Enter the device name, device number, and designated condition.

Appendix 3(1) shows which devices can be entered in the Condition area.

Device Settings	Device Settings
Device Name Device Number Device Number Select ON/OFF ON C OFF OK Cancel	Device Name Device Number C D D D D D D D D D D D D D D D D D D
Bit device selected	Word device selected

3) Timer

Sets the time from the designated condition being fulfilled until the input is issued. Enter the time in 10 ms units. The setting range is 0 to 9999 (\times 10 ms).

4)	 Input (Simulation Device) 			
	Designates the device that is turned ON/OFF when the designated condition is fulfilled.			
	Double-click on the [Input] area and designate the device or enter the device directly.			
	Multiple devices can be designated using the following method.			
	Independent device designation Designate non-consecutive			
	devices, delimited by commas.			
	(For example, X0, X2, X5.)			
	Consecutive device designation Designate the start and end device			
	of a series of consecutive devices,			
	separated by a hyphen (-).			
	(For example, X0-100.)			
	Mixed device designation Designate a mixture independent			
	and consecutive devices.			
	(For example, X0, X2, M10-20.)			
	Click a radio button to set whether the designated devices turn ON or OFF			
	when the condition is fulfilled.			

Appendix 3(2) shows which devices can be entered in the Input area.

5) Status

Designates whether each setting is enabled or disabled. A check mark \bigtriangledown appears in the check box if the setting is enabled.

(2) Starting the simulation

- 1) Click on the [OK] button when all items have been set.
- 2) When the [OK] button is clicked, the Save I/O System Settings As dialog box is displayed and the settings are saved if no setting error was made. See Section 4.4 for details about saving the settings.
 (If a setting error was made, a summary is displayed in a dialog box and the setting window is displayed again.)
- 3) The following confirm dialog box is displayed after the settings are saved. [Yes] button......Simulation of the setting file is conducted the next time the status is switched from STOP → RUN.

[No] button Only saves the settings. (No simulation.) Click the [Yes] button to run the simulation of the setting file.

Confirmatio	on
?	Press [YES] to activate the I/O system from the next RUN/RESET Press [NO] to just save the settings Yes[Y] No[N]

- 4) The I/O system setting dialog box closes and the initial window is displayed again.
- 5) The settings are enabled when the switch on the initial window is switched from STOP to RUN.

After the ladder logic test tool (LLT) are started the set I/O system settings remain enabled until they are deleted or the ladder logic test tool (LLT) are quit.

To use the same I/O system settings when the ladder logic test tool (LLT) are restarted, read the I/O system setting data from the saved file, as described in Section 4.5.

When GPPW is SW0D5 -GPPW-E(V), the I/O system settings made once are valid until you execute Clear I/O Settings, independently of whether the ladder logic test tool (LLT) has started or ended.

POINT

If settings are made in the RUN state, the state must be switched to STOP once and then returned back to RUN to enable the new settings.

For the example of simulation usage, refer to Section 7.4 "Using I/O System Settings for Debugging".

4.2 Checking Current I/O System Setting Status

[Purpose]

To check the file name of the current I/O system setting data.

[Operation Procedure]

Select [Start] \rightarrow [I/O system status] from the initial window.

[Setting Window]

I/O SYSTEM STATUS
File used for the I/O system settings is :
C:\MELSEC\LLT\Common\Data\PRDGRAM.TXT
OK

The name of the currently executing I/O system setting file is displayed. Nothing is displayed if no I/O system setting file is currently executing.

When I/O System Settings are being executed, the I/O system setting LED on the basic screen is lit.

4.3 Stopping Current I/O System Setting Operation

[Purpose]

Stops the currently executing I/O system setting operation. (Stop execution of the pseudo-sequence program.)

[Operation Procedure]

 $\label{eq:select_select} Select \ [Start] \rightarrow [Clear \ I/O \ settings] \ from \ the \ initial \ window.$

[Setting Window]

CLEAR I/O SYSTEM				
٩	This will disable the I/O System settings.			
	YesY No(N)			

Click on the [Yes] button to stop execution of the current I/O system settings.

POINTS

- Operation of the pseudo-sequence program stops at the timing the status changes from STOP to RUN.
- When I/O System Settings are not executed, the I/O system setting LED on the basic screen is off.

4.4 Saving I/O System Settings to File

[Purpose]

Saves the settings made in the I/O system setting dialog box to a file.

[Operation Procedure]

Select [Settings] \rightarrow [Save file] in the I/O system setting dialog box.

[Setting Window]

	SAVE L/D SI	1)	e	4)	5) 6)	1
	Save in:	Data		• 🗖 🗹		7)
	E Program.t E Sample.T>	«t ≺T			List	
2)——	➡File <u>n</u> ame:				<u>S</u> ave	8)
3)——	►Save as <u>t</u> ype:	TextFiles(*,TXT)		•	Cancel	

[Description of the Settings]

1) Save Destination

Designates the folder where the file is to be saved. Designate the folder from a drop-down menu or double-click on a folder name in the folder list.

- 2) File nameSets the name of the created data file.As the extension is fixed as TXT, set the file name with no extension.
- 3) Save as type Sets the type of saved file. Fixed as a text file (*.TXT).
- 4) Up One Folder Click to move up one folder from the present folder position.
- 5) Create New Folder Click to create a new folder under the designated folder.

- 6) Display Folder List Click to display the folder names and file names only.
- 7) Display Folder Details Click to display the folder name, file names, size, file type, and last modified date.
- 8) [Save] button Click when all settings are complete.

4.5 Reading the I/O System Setting File

[Purpose]

To read data from a file to re-use previous settings.

[Operation Procedure]

Select [Settings] \rightarrow [Open file] in the I/O system setting dialog box.

[Setting Window]

Open the 1/0	1) Sustem File		4)	5)	6) ? x	1
Look in:	Data	•				7)
III) Program.tx IIII) Sample.T≻	t T					
2) —→ File <u>n</u> ame:	I			<u>(</u>	<u>]</u> pen	
3) → Files of <u>type</u> :	Text files(*.TXT)		•	C	ancel	

[Description of the Settings]

1) File Location

Designates the folder where the file is saved. Designate the folder from a drop-down menu or double-click on a folder name in the folder list.

2) File name

Sets the name of the file to be opened. Enter the file name directly or double-click on the file name in the folder list.

3) to 7)

See Section 4.4 for details about settings.

8) [Open] button Click when all settings are complete.

5. MONITORING DEVICE MEMORY --- MONITOR TEST FUNCTION

The monitor test functions monitor the status of the device memory saved in the ladder logic test tool (LLT), force bit devices ON/OFF, and test changes to word device present values.

5.1 GPPW and Ladder Logic Test Tool (LLT) Monitor Test Functions

A combination of the ladder logic test tool (LLT) and GPPW monitor test functions allows the extensive GPPW monitor test functions to be used offline. All monitor test functions available with the GPPW and ladder logic test tool (LLT) are described below.

If a function is not supported by the ladder logic test tool (LLT), execute a function from a GPPW menu.

Function		Function Executed from a GPPW Menu	Function Executed from a Ladder Logic Test Tool (LLT) Menu	
	Ladder monitor	0	_	
	Device batch monitor	0	0	
	Device registration monitor	0	_	
Monitor test	Buffer memory batch monitor	0	0	
functions	Device test	0	0	
	Skip execution	0	—	
	Partial execution	0	_	
	Step execution *1	0	_	

O..... Available
-..... Not supported

*1: For the Q series CPU (Q mode), GPPW cannot be used. Only LLT may be used.

See the SW4D5C-GPPW Operating Manual for details of the functions which can be executed from the GPPW menu.
5.2 Monitoring/Testing the Device Memory

This section describes how to monitor/test the device memory. This section provides only the functions which are performed from the ladder logic test tool (LLT) menu. See the SW4D5C-GPPW-E(V) Operating Manual for details of the functions performed from the GPPW menu.

5.2.1 Displaying the timing chart for devices

[Purpose]

To visually confirm a ladder program by displaying the ON/OFF status of a bit device or the change in value of a word device using a chart.

[Starting Method]

Select [Timing Chart] \rightarrow [Run] in the device memory monitor window. Maximum of four timing charts can be displayed.

POINT

For an example of timing chart usage, refer to Section 5.3 "Example of Timing Chart Display Usage".

5.2.2 Selecting the devices for the monitor test

This section describes how to select the devices for the monitor test.

[Operation Procedure]

- 1) Select [Start] \rightarrow [Device Memory Monitor] from the initial window.
- Select [Device Memory] then [Bit Device] or [Word Device] in the device memory monitor window and select the devices to be monitored in the monitor test.

The selected device window is displayed.
 The selected device monitor is started automatically.

UU U-49					- 🗆 ×
00	10 0	20 0	30 0	40 0	
400	11 140	210	31 0	410	
20	12 0	220	32 0	42 0	
3 120	13 0	23 0	330	43 0	10
410	14 0	24 0	34 0	44 0	
S I LO	15 1000	2010	3010	40 0	[6
7/05	170	20 102	276	40 0	-18
910	19[0	2/ 10	200	4910	_1
90	190	2010	390	4910	
	1010	-olo	0000	100	

POINT

For the A series, QnA series, Q series or motion controller CPU functions, always make I/O assignment setting of GPPW when monitoring the buffer memory of the special function module.

4)

Click on the \blacksquare \blacksquare \blacktriangleright button or select [Display] \rightarrow [Jump] (F9) to
change the displayed device range.
Click this button to display the first page of
currently displayed devices.
Click this button to display the previous page of
currently displayed devices.
Click this button to display the next page of
currently displayed devices.
▶ Click this button to display the last page of
currently displayed devices.
$[Display] \rightarrow [Jump] (F9)$ Select these items to open the following setting
window.
Designate the first device number to bdisplayed.
🚔, Jump to 🛛 🗙
D
OK Cancel

 To open multiple windows, select [Window] → [New] (F2) and designate the device names and device numbers.

The designated device windows are displayed overlapping each other.

	View	0.000000	Value	simal C Housdosinal	
	16 Bit Integer	C 32 Bit Integer C	Real	cimai () Hexadecimai	
-					
5)D 0-49					×
😧 TN 0- 49					
	10 0	20 0	30 0	40 0	-
10	110	21 0	31 0	41 0	-
20	120	220	32 0	42 0	-
30	13 0	23 0	33 0	43 0	
40	14 0	24 0	34 0	44 0	
5 0	15 0	25 0	35 0	45 0	
60	16 0	26 0	36 0	46 0	
70	17 0	27 0	37 0	47 0	
80	18 0	28 0	38 0	48 0	
90	19 0	29 0	39 0	49 0	
	oron de d		CT-MELOC CO-MOLLUE		

POINTS

 Although the device window opens in either procedure of [Device Memory] → [Bit Device] / [Word Device] or [Window] → [New] (F2), the device window called by the procedure beginning with the selection of [Device Memory] display the devices starting from device number 0.

Select [Window] menu (F2) to specify an arbitrary start device number for display.

(2) Pressing the ESC key closes the device window which is currently active.

5.2.3 Stopping and restarting the device memory monitor

[Purpose]

To stop the device data changes and view the monitor window.

[Operation Procedure]

 Select [Monitor] → [Start/Stop] (F3) in the Device memory monitor window while monitoring the device memory.

🔀 DEVICE MEMORY MONITOR									
Start	Timing Chart	Device Memory	<u>M</u> onitor	Display	Window				
	<u> </u>		Start /	Stop	FÐ				
			Monitoring Interval						

- 2) The device memory monitoring stops.
- 3) To restart the device memory monitoring, select [Monitor] \rightarrow [Start/Stop] (F3) again.

POINT										
The present m	onitor status is displayed in the guidance column below the device									
memory monit	or window.									
 During mon 	itoring									
	Monitoring									
 During mon 	During monitor stopped									
	Monitor Stop									

5.2.4 Changing the monitor communications interval

[Purpose]

To set the interval at which the ladder logic test tool (LLT) device memory status is monitored.

[Operation Procedure]

1) Select [Monitor] \rightarrow [Monitor Interval] in the Device memory monitor window.

The monitoring interval dialog box is displayed.
 Drag the pointer in the dialog box to set the monitoring interval.
 Click on the [OK] button when the setting is complete.

5.2.5 Changing the device memory monitor format

[Purpose]

To switch the display format of the device monitor column to match the data contents.

[Setting Window]

			1)		2	:)
📵 DEVICE MEMO	DRY MONITOR					_ 🗆 🗙
Start Timing Chart	Device Memory	<u>Monitor</u> Display	Window			
		ew 1 16 Bit Integer	O 32 Bit Integer	C Real	C Decimal C	Hexadecimal
😧 D 0-49						
and the second se		10[-	201			
UO		1010	20 0	30 0	40	
1 400		11 140	20 0	30 0	40	
0 1 400 2 0		11 140 12 0	20 0 21 0 22 0	30 0 31 0 32 0	40 41 41 42	

[Description of the Settings]

1) View

Selects whether to display the values in the device monitor column in 16-bit units, 32-bit units, or as a floating decimal-point display when monitoring a word device.

The same operation is possible from the keyboard by pressing the F7 key. 16 Bit Integer Displays the values in 16-bit units.

32 Bit Integer Displays the values in 32-bit units.

Real..... Displays the value as a floating decimal-point value (single-precision value).

2) Value

Selects whether to display the values in the device monitor column as a decimal or hexadecimal value when monitoring a word device.

The same operation is possible from the keyboard by pressing the F8 key. Decimal Displays a decimal value.

Hexadecimal...... Displays a hexadecimal value.

POINT

The device monitor format can also be changed by selecting the desired format from the drop-down menu of [Display] in the Device memory monitor window.

5.2.6 Changing the window display format

[Purpose]

To open a new window or rearrange windows.

[Operation Procedure]

1) Opening a new window

Choose [Window] \rightarrow [New] in the Device Memory window.

Entering the device name and device number and clicking the [OK] button opens a new window.

😧 Input	x
Device Name	
	-
X Y	Device Number
OK	Cancel

POINT

You can open up to 8 windows concurrently. An attempt to open more than 8 windows will result in an error.

2) Cascade

 $\label{eq:choose} Choose \ [Window] \rightarrow [Cascade] \ in \ the \ Device \ Memory \ window.$

	<u>W</u> indow		
	<u>N</u> ew	F2	
I	<u>C</u> ascade	е	
I	<u>T</u> ile		
Ī	Arrange		
i	<u>1</u> × 000)0-009F	
	<u>2</u> M -0-9	39	
IL.	✓ <u>3</u> Y 000)0-009F	

The currently open windows are cascaded.

1	B DE	VICE Timir	MEMOR	r MONIT (evice Mem	DR Iory <u>M</u> onito	Display	<u>W</u> indow							<u>- </u> ×]
:			►												
	θ×	000	0-009F									IX .		_]
		B) M	0- 99								L	- I ×			Ľ
	Г	6	Y 0000-	009F								_ 🗆	×		l
			0000	0010	0020	0030	0040	0050	0060	0070	0080	0090	<u>-</u>		H
		· ·	0001	0011	0021	0031	0041	0051	0061	0071	0081	0091			Ш
			0002	0012	0022	0032	0042	0052	0062	0072	0082	0092			H
			0003	0013	0023	0033	0043	0053	0063	0073	0083	0093			H
			0004	0014	0024	0034	0044	0054	0064	0074	0084	0094			H
			0005	0015	0025	0035	0045	0055	0065	0075	0085	0095			H
			0006	0016	0026	0036	0046	0056	0066	0076	0086	0096			H
			0007	0017	0027	0037	0047	0057	0067	0077	0087	0097			H
			0008	0018	0028	0038	0048	0058	0068	0078	0088	0098			H
		<u> </u>	0009	0019	0029	0039	0049	0059	0069	0079	0089	0099			H
4			000A	001A	002A	003A	004A	005A	006A	007A	008A	009A			H
I			000B	001B	002B	003B	004B	005B	006B	007B	008B	009B			H
Ш			000C	001C	002C	003C	004C	005C	006C	007C	008C	009C		_	
Ш			000D	001D	002D	003D	004D	005D	006D	007D	008D	009D			
			000E	001E	002E	003E	004E	005E	006E	007E	008E	009E	-		ł
	E1:	4	E2: NEV	/ E3:81	TOP E4	1	E5:	Eß	E7	E8'	l p	INT 951UMP	E10'TES	at l]
				Monit	oring			1.0.							8
ł				Jwonn	onng									/	7

3) Tile

Choose [Window] \rightarrow [Tile] in the Device Memory window.

lay	<u>W</u> indow			
	<u>N</u> ev	/	F2	
	<u>C</u> as	cade		
	<u> </u>			
	<u>A</u> rra	nge		
	<u>1</u> ×	0000-009F		
	<u>2</u> M	0-99		
	✓ <u>3</u> Y	0000-009F		
	0040	0050	000	50

|--|

6	DEV	ICE MEMO	RY MONIT	DR							-	
2	tart]	Timing Chart	Device Merr	ory <u>M</u> onitor	Dis <u>p</u> lay	<u>₩</u> indow						
۱												
	🕀 Y I	0000-009F								_ 🗆 ×		
- Ir	000	00 001	0 0020	0030	0040	0050	0060	0070	0080	0090 🔺		
Ľ	00	01 001	1 0021	0031	0041	0051	0061	0071	0081	0091		
11	00	02 001	2 0022	0032	0042	0052	0062	0072	0082	0092		
	00	03 001	3 0023	0033	0043	0053	0063	0073	0083	0093 🗾		
	4											
	ê) M	0- 99								_ 🗆 🗙		
11		0 1	0 20	30	40	50	60	70	80	90 🔺		
		1 1	1 21	31	41	51	61	71	81	91		
11		2 1	2 22	32	42	52	62	72	82	92		
1.	. (3 1	3 23	33	43	53	63	73	83	93 🔽		
Н	1											
18	۵×۱	0000-009F								- IX		
- I I	000	00 001	0 0020	0030	0040	0050	0060	0070	0080	0090 📥		
	00	01 001	1 0021	0031	0041	0051	0061	0071	0081	0091		
	00	02 001	2 0022	0032	0042	0052	0062	0072	0082	0092		
	00	03 001	3 0023	0033	0043	0053	0063	0073	0083	0093 -		
	1											
F	1:	F2: N	EW F3:ST	FOP F4:	F	5:	F6:	F7:	F8:	F9:JUN	IP F10:TEST	Г/і,
			Monit	toring								
T												

4) Arrange

Choose [Window] \rightarrow [Arrange] in the Device Memory window.

The windows reduced to icons are arranged at the bottom left of the Device Memory Monitor window.

📵 DE	VICE MEMO	RY MONITOR			
<u>S</u> tart	<u>T</u> iming Chart	Device Memory	<u>M</u> onitor	Dis <u>p</u> lay	Window
	_	_	-	-	
le u	0000-004			R	
E1.	E 2: N	EW ED.	EA:		
F1.	F 2. N	EVV 1/3.	f4.		ro. ro. ro. ro. ro. ro.
@ U F1:	0000-004 F2: N	EW F3:	W 0-99	F	F6: F6: F7: F8: F9: F10:TEST

5.2.7 Running the device test

[Purpose]

To force bit devices ON/OFF or force changes to the present values of word devices while monitoring the devices.

[Operation Procedure]

Select [Device Memory] then [Bit Device] or [Word Device] in the Device memory monitor window and select the devices to be monitored in the monitor test.

1) Forcing Bit Devices ON/OFF

Double-click on the device number to be turned ON/OFF in the bit device monitor window.

Or, click on the device number to select it and press the F10 key.

The ON/OFF status of the selected bit device is highlighted.

	a 🗙 0000-	009F	
	0000	0010	0020
	0001	0011	0021
	0002	0012	0022
Double-click here	▶ 1003	0013	0023
	0004	0014	0024
	0005	0015	0025

2) Changing Word Device's Current Values

1. Move the cursor to the current value text box for the word device and directly input the required value.

	🗊 D 0-49	
Input the required value here	1 400 2 0 3 120 4 0	10 0 11 140 12 40 13 0 14 0

2. Press the Enter key to change the original present value to the designated value.

A device current value can be changed by the following method.

- 1. Double-click on the device number.
- 2. A numeric keypad is displayed. Input a new value and click on the [SET] button.

POINT

Always select the hexadecimal display for numeric values when inputting a hexadecimal using the numeric keypad. Note that character-string cannot be input.

5.3 Using Timing Chart

(1) Screen display/operation

When you run Timing Chart, the following Timing Chart screen appears. The following gives the explanations of the display data/operation method of the Timing Chart screen.

Open File	Reads from the file the device names to be registered
	to the timing chart.
Save File As	Saves in the file the device names registered to the
	timing chart.
	Device values are not saved.
Exit	Exits from Timing Chart.

2) Device

Enter Device Shows the Device Entry dialog box.

🚇 Device Entry	х
Device	
Display Format Value	_
Decimal	
_View	
16 Bit Integer	
Enter Cancel	

(You can set devices of up to 64 points.) Enter the devices to be monitored with the display format specified.

Delete Device Deletes the selected devices from registration.

List DeviceShows the Device List dialog box.

🕀 Device List		х
X0 🔺	Enter	1
×1 X2 ×20		
X21	Move	
X22 X23	Jump T	<u> </u>
IN4X30	Close	

- Clicking the Enter button shows the Device Entry dialog box.
- Clicking the Delete button deletes the devices from those to be monitored. " Shift key + Select" or "
 Ctrl key + Select" enables multiple devices to be deleted at the same time.
- Clicking the Jump To button causes the timing chart display to jump to the selected device.
- Clicking the ▲ / ▼ button moves the selected device up/down.
- Selecting multiple devices (You cannot be select multiple devices to move.)

Property......Shows the dialog box which is used to change the display format of the selected word device.

😧 Property 🛛 💌	1
Device K4X30	
Display Format	
OK Cancel	

- Value..... Changes between Decimal and Hexadecimal.
- View...... Changes between Thirty Two Bit Integer and Real. (Valid only when the selected device is a double word.)
- 3) Monitor

Start/Stop Starts/stops monitoring.

Sampling Period Sets the device value collection interval in the range 1 to 20 scans.

[Example]

When Data Accumulation Interval is set to 5 scans, the device value is collected per 5 scans and shown on the Timing Chart display screen. (The default is 1 scan.)

REMARK

If you change the sampling period setting, the data shown in the timing chart are cleared.

4) Monitor Status

By clicking the "Status" button, you can start/stop monitoring.

5) Device Entry

Auto...... The device registered in the monitor using GPPW is automatically registered. (It is capable of registering up to 64 devices.)

> When the monitor registration contents of GPPW have been changed, the device registration will be automatically updated.

When adding a device to the registration in the timing chart window, switch the device registration setting to "Manual" after a message is displayed. Manual Device is registered manually.

POINTS

(1) Devices registered using GPPW are automatically displayed in the timing chart window.

If the timing chart window does not show these devices, switch the device registration setting from "Auto" to "Manual" and execute device registration.

- (2) For the instruction whose argument occupies double-word positions in any CPU, two word devices will be displayed in the timing chart.
 (For DINC D0, D0 and D1 are entered.)
- (3) When batch monitor of GPPW was used to monitor a bit device in any CPU, this bit device will not be displayed in the timing chart.
- (4) When the A/FX/Q (A mode)/motion controller CPU is selected, the bit digitspecified/index-qualified device will not be displayed in the timing chart.
- (5) When the QnA/QCPU (Q mode) is selected, the buffer memory will not be displayed in the timing chart if it is used in the sequence.
- (6) If the FX series CPU is selected, the following instructions displayed on the GPPW ladder monitor window will not be displayed in the timing chart. These instructions are:

```
(RST T, RST C,
PLS Y, PLS M,
PLF Y, PLF M
```

- - Word device......Displays the device value in an edit box at the right side of the device name. Double clicking on the device value will edit the device value.

POINTS

(1) The expressions in the timing chart are timer (T), counter (C), and retentive timer (ST), and each of them has three types; contact, coil, and current value. In the timing chart, they are expressed as follows.

		Expressio	the timing chart	
		Timer	Counter	Retentive timer
	Contact	TS	CS	STS
	Coil	тс	СС	STS
	Current value	TN	CN	STN

(2) Buffer memory is displayed as follows. The first I/O number of a special function module

Address

When the first I/O number is 4 and the address is K30, they are displayed as "U4\G30".

(3) Extension file register is displayed as follows.

Block No. ER ▼ \R ▲ Address

When the block No. is 2 and the address is K30, they are displayed as "ER2\R30".

By dragging and dropping the device name, you can exchange the device display positions in the following method.

• Drag the device name on the Timing Chart screen.

During dragging, a white square frame appears.

• By placing the white square frame over the device name you want to exchange, you can exchange the device names.

Timing Chart		🔀 Timing Chart	
<u>File Device Monitor</u>		<u>File Device Monitor</u>	
Status	ce	Status De	evic
Stop C A	uti	Monitor C	Au
-10	Ť	·10	D
×0	2 4 4 4 4 4 4 4 4	XO	
k1	Stop dragging	cc0	
Y70		¥70	
TN2 0		TN2 0	_
		<u>kı</u>	
	1 4 4 2 1 1 1 4 4 4		
		•	_

Overlap white dotted box over CC0

8) Reference line/scale

The scale displayed indicates the past scan count. Clicking the scale moves the reference line (vertical line) and shows the device values at that scan in 7).

9) Scroll bar

Up to 1000 sampled past states of devices area saved. By operating the scroll bar, you can confirm the past states of devices.

10) Status display

Shows the states of the monitor devices.

- *1 denotes that the corresponding device turned from OFF to ON.
- *2 denotes that the corresponding device turned from ON to OFF.
- *3 denotes that the value of the corresponding device remains unchanged.
- *4 denotes that the value of the corresponding device has changed.

- (2) Viewing the status changes of the devices monitored The ladder logic test tool (LLT) saves up to 1000 sampled past states of devices. The following example gives how to confirm the device states of 260 scans earlier.
 - 1) Set Status in Timing Chart to Stop.
 - 2) Operate the scroll bar until -260 appears on the Timing Chart screen.

3) Click "-260" shown on the horizontal axis of the Timing Chart screen.

 By clicking "-260", the device states of 260 scans earlier appear in *1. The bit device ON/OFF states and word device value appear in *1.

(3) Usable devices

The device names that can be used (displayed) in the timing chart are shown below.

A Series CPU Functions, Motion Controller CPU Function					
Q Series CPU (A Mode) Functions					
Symbol	s Displayed	Device Name			
on	Window	Bevice Hame			
	х	Input			
	Y	Output			
	М	Internal relay			
	F	Annunciator			
Dit douico	В	Link relay			
DIL GEVICE	TS	Timer (contact)			
	ТС	Timer (coil)			
	CS	Counter (contact)			
	СС	Counter (coil)			
	Sp.M	Special relay			
	TN	Timer (Current value)			
	CN	Counter (Current value)			
	D	Data register			
	W	Link register			
Word	Buffer Memory	Buffer memory			
device	R	File register			
	ER	Extension file register			
	Z				
	V	Index register			
	Α	Accumulator			
	Sp.D	Special register			

FX Series CPU Functions				
Symbol on ^v	s Displayed Window	Device Name		
	х	Input		
	Υ	Output		
	М	Internal relay		
	S	State		
Bit device	TS	Timer (contact)		
	TC	Timer (coil)		
	CS	Counter (contact)		
	CC	Counter (coil)		
	Sp.M	Special relay		
	TN	Timer (Current value)		
	CN	Counter (Current value)		
VA/ and	D	Data register		
vvora	Buffer Memory	Buffer memory		
uevice	Z	Index register		
	V	index register		
	Sp.D	Special register		

QnA Series CPU Functions					
Q Series CPU (Q Mode) Functions					
Symbol on \	s Displayed Window	Device Name			
	X	Input			
	Y	Output			
	Μ	Internal relay			
	L	Latch relay			
	F	Annunciator			
	V	Edge relay			
	SB	Special link relay			
	В	Link relay			
Bit device	SM	Special relay			
	TS	Timer (contact)			
	ТС	Timer (coil)			
	STS	Retentive timer (contact)			
	STC	Retentive timer (coil)			
	CS	Counter (contact)			
	CC	Counter (coil)			
	FX	Function input			
	FY	Function output			
	TN	Timer (Current value)			
		Retentive timer			
	SIN	(Current value)			
	CN	Counter (Current value)			
	D	Data register			
Word	W	Link register			
device	SW	Special link register			
	SD	Special register			
	R	File register			
	ZR	Serial file register			
	Z	Index register			
	U	Buffer memory			

6. SAVING AND READING THE DEVICE AND BUFFER MEMORIES --- TOOL FUNCTIONS

The tool functions are functions to save the contents of the device memory or special function unit buffer memory at any time and to read the saved data to the ladder logic test tool (LLT).

The tool functions allow the contents of the ladder logic test tool (LLT) device memory or special function unit buffer memory to be saved during debugging. The saved data can then be read to the ladder logic test tool (LLT) when debugging is repeated, to allow debugging to be continued from the status when the data was saved.

6.1 Saving the Device and Buffer Memories

[Purpose]

To temporarily save the contents of the device memory and buffer memory to allow debugging to continue after the personal computer is re-booted.

[Operation Procedure]

- 1) Set the execution status in the initial window to STOP when the device memory or buffer memory contents are to be saved.
- 2) Select [Tools] \rightarrow [Backup device memory] or [Backup buffer memory].

Click on the [Yes] button, to save the entire device memory or the buffer memory for the slots allocated to special function units in the I/O assignment settings. The buffer memory data is saved to the following directories:

• A Series CPU Functions

(Directory where the ladder logic test tool (LLT) are installed) \Acpu\Devmem • QnA Series CPU Functions

- (Directory where the ladder logic test tool (LLT) are installed) \QnAcpu\Devmem • FX Series CPU Functions
- (Directory where the ladder logic test tool (LLT) are installed) \FXcpu\Devmem • Motion controller CPU Functions
- (Directories where the ladder logic test tool (LLT) are installed)\Acpu\Devmem • Q Series CPU Functions

(Directory where the ladder logic test tool (LLT) are installed) \Qcpu\Devmem

[Example]

If C:\Melsec\LLT is designated as the directory where the ladder logic test tool (LLT) are installed, then the buffer memory data is saved to the following directories: A Series CPU Functions......C:\Melsec\LLT\Acpu\Devmem FX Series CPU Functions.....C:\Melsec\LLT\QnAcpu\Devmem Motion controller CPU FunctionsC:\Melsec\LLT\Acpu\Devmem Q Series CPU FunctionsC:\Melsec\LLT\Acpu\Devmem

POINTS

(1) If the execution status is RUN, device memory/buffer memory cannot be saved.

To save the device memory/buffer memory, change the status to STOP.

(2) The ladder logic test tool (LLT) can save only one file. If data already exists in the ladder logic test tool (LLT), the new file overwrites the existing data (file).

6.2 Reading Saved Device Memory or Buffer Memory Data

[Purpose]

To read the stored data of device memory and buffer memory.

[Operation Procedure]

Set the execution status in the initial window to STOP. Select [Tools] \rightarrow [Restore device memory] or [Restore buffer memory].

[Setting Window]

Reading device memory

1)

<A Series CPU, Motion controller CPU and Q Series CPU (A Mode)>

RESTORE DEVICE MEMORY × ∇ γ M **▼** F ₽ 🗣 ▼ Z/V ₩ A ₩ Т ₽ C 🔽 Sp.M D w 🔽 Sp.D **₽** R SELECT CANCEL CLEAR OK AL 3) 4) 5)

<FX Series CPU>

Reading buffer memory

<A Series CPU, QnASeries CPU, Motion controller CPU and Q Serise CPU >

<FX Series CPU>

[Description]

Read Device Check Boxes

Click in the check boxes to select the devices read to ladder logic test tool (LLT).

Click on a check box again to cancel a selection. All devices are selected by default.

Read Special Function Module Check Boxes For A Series, QnA Series, Motion controller or Q Series CPU functions, the special function module first I/O number is displayed at the top of the window.

The special function module block number or module block number is displayed at the top of the FX Series window.

Click the check box to select the special function module to be read to the ladder logic test tool (LLT).

Click on a check box again to cancel a selection.

All special function modules are selected by default.

Only the special function module buffer memory can be read.

3) [CLEAR] button

Click to clear all device or special function module selections.

- 4) [SELECT ALL] button Click to select all devices or special function modules.
- 5) [OK] button Click this button after completing all settings.

POINTS

(1) Device memory/buffer memory read is not allowed while the execution status is RUN.

Change the execution status to STOP before reading device memory/buffer memory.

(2) With the A series, QnA series, Q series, Motion controller CPU functions, selection of a slot that is not assigned to a special function module using the GPPW I/O assignment setting is not possible.

Before reading buffer memory, set the GPPW I/O assignment.

MEMO

7. EXAMPLES OF LADDER LOGIC TEST TOOL (LLT) APPLICATIONS

This chapter provides examples of debugging an actual program using the ladder logic test tool (LLT).

[Simulation Example]

The following system is designed to count the number of products of various lengths fed by a belt conveyor using a photoelectric switch and a high-speed counter module. The system controls a machine, which selects with two sensors from among the products the one that, has larger dimensions than the specified, lifts it with a hand, and transfers it to the other line.

If a product of greater than the specified dimensions is fed, the No. 1 sensor (X2) and No. 2 sensor (X3) turn on at the same time to stop operation temporarily.

[System Configuration]

[Module Makeup]

7.1 Debugging Using GPPW Step Execution Function

Using GPPW alone, it is not possible to turn arbitrary devices ON/OFF or to change device values during step execution. However, using the ladder logic test tool (LLT) allows the device values to be easily changed during step execution. This section uses the following program to give an example of debugging using step execution.

Program example ...Finds an error.

Running the program on page 7-2 and turning on M402 causes "SP. UNIT ERROR" to occur.

Carry out step execution to find out the step at which the error has taken place. The procedure to debug this program example is indicated below.

(1) System configuration example

Assuming that the system configuration is as on page 7-1, debugging is performed without the PLC CPU being connected.

(2) Debugging procedure

<Pre-debugging operation>

- 1) Start GPPW and create the program on page 7-2.
- Choose [Tools] → [Start ladder logic test] on GPPW to start the ladder logic test tool (LLT). (At a start, the parameters and program are automatically written and SWITCH changes to RUN.)
- Choose [Online] → [Monitor] → [Monitor mode] on GPPW to start monitoring.

<Step execution>

4) Set SWITCH of the ladder logic test tool (LLT) to STEP RUN.

LADDER LOGIC TEST TO Start Tools Help	JOL
Q2A	
RUN ERROR USER	TRAP
INDICATOR RESET	SWITCH STOP RUN STEP RUN I/O SYSTEM RUN

- 5) Turn on M402.
- 6) Move the cursor to the position where step execution will be started (step 0).
- 7) Choose [Online] \rightarrow [Debug] \rightarrow [Step execution] on GPPW. The Step Execution dialog box then appears.
- 8) Every time you click the <u>Step excute</u> button in the Step Execution dialog box, one instruction is executed.
- As you click the <u>Step excute</u> button to run the program on an instruction-by-instruction basis, you will know that "SP. UNIT ERROR" occurs when [TOP H4 K3 D0 K1] is executed.

POINT

"SP. UNIT ERROR" occurred because you attempted to write a value to the buffer memory using the TO instruction, without making I/O assignment. Section 7.2 gives a debugging example in which I/O assignment is made and the buffer memory is used.

7.2 A/QnA Series Special Function Module Program Debugging Example

This section provides a procedure to debug a special function module program using the ladder logic test tool (LLT). This example assumes a system where the special function module used is a high-speed counter module.

(The ladder logic test tool (LLT) supports only the buffer memory area of the special function module. To use the buffer memory area, I/O assignment must be set in the parameters on GPPW.)

Program example ...Monitors the device memory.

The pulse input mode is written to the pulse input mode setting area (buffer memory address 3) of the high-speed counter module. (Refer to the sequence program on page 7-2.)

Also, the counter value is read from the current value area to D10. The procedure to debug this program example is described below.

(1) System Configuration Example

Assuming that the system configuration is as on page 7-1, debugging is performed without the PLC CPU being connected.

(2) I/O signals of the high-speed counter module

(a)	Count enable command	Y54
-----	----------------------	-----

(3) Devices designed for user

- (a) Operation command X0
- (b) Operation command memory M0
- (c) Count value read commandX10
- (d) Pulse input mode storage register D0
- (e) Count value storage registerD10
- (f) Display character string storage register D100 to 115

(4) Debugging Procedure

<Pre-debugging operation>

- 1) Start GPPW and create the program on page 7-2.
- 2) Double-click [PLC parameter] on GPPW, click the <<I/O assignment>> tab, and make I/O assignment as indicated below.

	Slot	Туре	Model	Points
0	0(0-0)	Input	AX41	32 point
1	0(0-1)	Output	AY41	32 point
2	0(0-2)	Special	AD62	32 point

- Choose [Tools] → [Start ladder logic test] on GPPW to start the ladder logic test tool (LLT). (At a start, the parameters and program are automatically written and SWITCH changes to RUN.)
- 4) Choose [Online] \rightarrow [Monitor] \rightarrow [Monitor mode] on GPPW to start monitoring.

<Checking that pulse input mode setting has been written>

5) Check whether the pulse input mode has been written to the pulse input mode setting area (buffer memory address 3) of the high-speed counter module. (Refer to step 4 in the sequence program on page 7-2.)

When the CPU switches from STOP to RUN, the sequence program has written the pulse input mode. Therefore, monitor the buffer memory address 3 of the high-speed counter module using Device Memory Monitor to check whether the preset pulse input mode has been written.

Enter "4" into Starting Address of the module.

😧 Input Unit Addres	\$\$	×
Starting Address	4	(Hex)
(No need to set th	e lowest dig	it)
Buffer Memory	C Decimal	Hex
ОК	Cancel	

	🚇 U 0000-004F (Uni	t's starting Address	4]		
	0000 0	00100	0020 o	0030 0	0040 0
	0001 0	00110	0021 0	0031 0	0041 0
Digital value "2"	0000 2	00120	00220	0032 0	0042 0
is written	0003	00130	0023 0	0033 0	00430
15 WILLEIT	0004 0	0014 0	0024 o	0034 0	0044 0
	0005 jo	0015 o	0025 jo	0035 jo	0045 0
	0006 o	0016	0026 0	0036 0	0046 0
	0007 o	0017 o	0027 o	0037 0	0047 0
	0008 0	0018	0028 0	0038 0	0048 0
	0009 0	00190	0029 o	0039 0	0049 0
	000A o	001A o	002A 0	003A o	004A o
	000B o	001B o	002B o	003B o	0048 0
	000C o	001C 0	002C o	003C o	004C 0
	000D o	001D 0	002D o	003D 0	004D 0
	000E o	001E o	002E o	003E o	004E 0
	000F jo	001F jo	002F jo	003F jo	004F jo 👻
	•				

<Reading the count value>

 Assuming that the count value has been updated on the high-speed counter module, write the count value to address 4 of the buffer memory in advance using Device Current Value Change.

	🚇 U 0000-004F (Uni	t's starting Address	s 4)		_ 🗆 X
	0000	0010	0020 0	0030 0	0040 0
	0001 0	0011 0	0021 0	0031 0	0041 0
	0002 2	00120	00220	0032 0	0042 0
	0003 0	00130	0023 0	00330	00430
Write count value -	006 100	00140	0024 0	0034 0	0044 0
"100" using	00050	00150	0025 0	0035 0	0045 o
Device Current	0006 0	0016	0026 0	0036 0	0046 0
Device Current	0007 0	0017 0	0027 0	0037 0	0047 0
Value Change	0008 0	0018	0028 0	0038 0	0048 0
-	0009 0	00190	0029 0	0039 0	00490
	000A o	001A 0	002A 0	003A 0	004A o
	0008 0	00180	002B o	003B 0	00480
	000C o	001C	002C 0	003C 0	004C 0
	000D 0	001D 0	002D 0	003D 0	004D 0
	000E 0	001E	002E 0	003E	004E 0
	000F 0	001F o	002F o	003F o	004F o

- 7) Forcibly turn on the count value read command (X10).
- 8) When X10 turns on, the count value is read from addresses 4 and 5 of the buffer memory to D10.

Count value "100" is read using Current Value Change

📵 D 0-49				- 1
	₩(100	200	30 0	40 0
1 0	110	21 0	31 0	41 0
2 0	12 0	22 0	32 0	42 o
3 0	130	23 0	33 0	43 o
4 0	14 0	24 o	34 o	44 o
5 jo	15 o	25 o	35 jo	45 jo
60	16 o	26 o	36 o	46 o
7 0	17 o	27 o	37 0	47 o
80	180	28 o	38 0	48 o
90	19 o	29 0	39 o	49 0

Since the sequence program uses the LED instruction to show the value on the indicator, check whether it is displayed on the basic screen.

	LADDER LOGIC TEST T	DOL
	<u>S</u> tart <u>T</u> ools <u>H</u> elp	
	Q2A	
Count value is displayed	COUNT= 100	TRAP
	INDICATOR RESET	
	RESET	© RUN C STEP RUN
		RUN

(5) Using the intelligent function module utility (Q series (Q mode) only) (future extension)

Use of the intelligent function module utility allows the Q series (Q mode) to access the buffer memory without the FROM/TO instruction being used. In this example, you need not write the FROM instruction in the sequence program if you make the setting to transfer a count value to D10 in Automatic Refresh Setting. The following sequence assumes that Automatic Refresh Setting has been made. (Step 18 and later)

18	M10 Operation command memory	X10 Countvalue read comm	and			SET	Y55 Count value read request		
				DFROP H4	H4	D10 Count value storage	K1]		This DFRO instruction is not required.
						RST	Y55 - Count value read request	-	
			_		[\$movp	"COUNT='	D100	_	
					BINDAP	D10 Count value storage	D103 Count value character string	-	
						-[LED	D100] Character string storage	-	
38							-[END]	-	

7.3 Using Timing Chart Display for Debugging

This section explains how to check device value changing timings with the timing chart which displays the device chart using the ladder logic test tool (LLT).

Program example ...Visually views a program in the timing chart.

When X0 is turned on, Y30 turns on. When X2 and X3 are turned on in this state, Y30 turns off. Further when X2 or X3 is turned off, Y30 turns on. Also, when X0 is turned on and X10 on, the value of D10 changes.

An example of using the timing chart display in this program example is described below. (Refer to page 7-2.)

(1) Timing chart displaying procedure

<Pre-debugging operation>

(If you are still performing the debugging procedure in Section 7.2, start from step 6).)

- 1) Start GPPW and create the program on page 7-2.
- 2) Double-click [PLC parameter] on GPPW, click the <<l/O assignment>> tab, and make I/O assignment as indicated below.

	Slot	Туре	Model	Points
0	0(0-0)	Input	AX41	32 points
1	0(0-1)	Output	AY41	32 points
2	0(0-2)	Special	AD62	32 points

- Choose [Tools] → [Start ladder logic test] on GPPW to start the ladder logic test tool (LLT). (At a start, the parameters and program are automatically written and SWITCH changes to RUN.)
- Choose [Online] → [Monitor] → [Monitor mode] on GPPW to start monitoring.
- Choose [Start] → [Device Memory Monitor] on the basic screen of the ladder logic test tool (LLT) to start Device Memory Monitor.
MELSEC

<Displaying the timing chart>

6) Running the timing chart

Choose [Run] \rightarrow [Timing Chart] of Device Memory Monitor to run the timing chart.

For the way to operate the timing chart, refer to Section 5.3 "Using Timing Chart".

7) Starting monitoring

Immediately after a start, Status shows "Monitor Stop". Click the "Status" button to start monitoring. (Setting "Device Entry" to "Auto" automatically enters the devices being monitored on GPPW.)

After turning X0 on, stop monitoring and move the scroll bar. When you confirm the place where X0 turned on, Y30 is on.

9) Turning on X2 and X3 Restart monitoring. (When monitoring restarts, the last monitoring results go off.)

Turning on X2 and X3 shows the status in which Y30 is turned off.

Stop monitoring and confirm the places where X2 and X3 turned on as in step 3).

10) Turning off X2

Restart monitoring.

Turning off X2 shows the status in which Y30 is turned on.

Stop monitoring and confirm the place where X2 turned off as in step 3).

7.4 Using I/O System Settings for Debugging

This section indicates a debugging procedure to be performed with the I/O system settings, which simulate external equipment using the ladder logic test tool (LLT).

Program example

The following I/O system setting method assumes that a product greater than the specified dimensions is fed 5 seconds after an operation start (X0=ON), operation is stopped once (X2, X3=ON, Y30=OFF), and in 3 seconds, operation is resumed (X2, X3=OFF, Y30=OFF). (Refer to pages 7-1 and 7-2.)

(1) I/O System Settings using procedure

<Pre-debugging operation>

(If you are still performing the debugging procedure in Section 7.3, start from step 4).)

- 1) Start GPPW and create the program on page 7-2.
- Double-click [PLC parameter] on GPPW, click the <<I/O assignment>> tab, and make I/O assignment as indicated below.

	Slot	Slot Type Model		Points
0	0(0-0)	Input	AX41	32 points
1	0(0-1)	Output	AY41	32 points
2	0(0-2)	Special	AD62	32 points

- Choose [Tools] → [Start ladder logic test] on GPPW to start the ladder logic test tool (LLT).
- Choose [Start] → [I/O System Settings] on the basic screen of the ladder logic test tool (LLT) to start I/O System Settings, and make the following settings.

These setting are saved in a file.

These settings cause the ladder logic test tool (LLT) to generate the sequence program shown on page 7-16 for debugging. This debugging sequence program is run after the user-created program.

- 5) To make the I/O system settings valid, stop the ladder logic test tool (LLT) once, and then run it again.At this timing, the pseudo-sequence starts operating.The pseudo-sequence is shown on the next page.
- Choose [Online] → [Monitor] → [Monitor mode] on GPPW to start monitoring.

MELSEC

REMARK

Making the above settings causes the pseudo-sequence program enclosed by dotted lines inside the ladder logic test tool (LLT) to be created in another file. The programs are run in the order of the created sequence program and pseudo-sequence program.

7. EXAMPLES OF LADDER LOGIC TEST TOOL (LLT) APPLICATIONS

MELSEC

MELSEC

<Checking the operation of the sequence program>

7) Turn on X0 (run the belt conveyor).

Turning on X0 starts operation. As soon as X0 turns on, M10 and Y30 turn on.

- 8) Confirm the states of X2, X3 and Y30.
 - (a) 5 seconds after X0 turns on, X2 and X3 turn on. (According to setting No. 1 of I/O system settings)
 (Two sensors detect that a product on the belt conveyor is larger than the specified dimensions.)
 - (b) When X2 and X3 turn on, Y30 turns off. (According to the sequence program)(The belt conveyor is stopped once.)

(c) 3 seconds after Y30 turns off, X2 and X3 turn off. (According to setting No. 2 of I/O system settings)
 (The hand lifts the product and transfers it to the other line.)

MELSEC

 (d) When X2 and X3 turn off, Y30 turns on. (According to the sequence program) (After transfer to the other line, the run of the belt conveyor is resumed.)

(e) 5 seconds X2 and X3 turn off, X2 and X3 turn on.
 (According to setting No. 2 of I/O system settings)
 (Two sensors detect that a product on the belt conveyor is larger than the specified dimensions.)

(f) After that, steps (b) to (e) are repeated in accordance with the operation of the belt conveyor until X1 is turned on to make a stop.

8. TROUBLESHOOTING

8.1 Error Messages Displayed on the LED Indicators

This section describes error messages and error codes occurring in the ladder logic test tool (LLT), gives a description and cause of the error, and suggests remedies.

(1) Ladder Logic Test Tool (LLT) for A Series CPU Functions

Error Message Error Code (D9008) * 1 Details Error Code (D9091)) * 1		Details Error Code (D9091)) * 1	Error Description and Cause	Remedy	
"INSTRCT CODE ERR."		101	The program contains an instruction code which could not be decoded by the ladder logic test tool (LLT).		
		102	Index qualification used for a 32-bit constant.		
		103	The device specified in the dedicated instruction is incorrect.		
		104	The program structure of the dedicated instruction is incorrect.		
		105	The command name of the dedicated instruction is incorrect.	Pood the error stop using CPDW	
$ \begin{pmatrix} \text{Checked at RUN} \\ \rightarrow \text{STOP or at} \\ \text{the execution of} \\ \text{an instruction} \end{pmatrix} $	10	107	 (1) The index qualification used for the device number and SV in timer or counter OUT instructions. (2) The index qualification used for the label number of the pointer (P) added at the start of an instruction jump destination or for the label number of the interrupt pointer (I) added at the start of an interrupt program for the following instructions. [CJ] [SCJ] [CALL] [JMP] [LEDA/B] FCALL] [LEDA/B] BREAK] 	and modify the program step.	
"MISSING END INS."		121	There is no END (FEND) instruction in the main program.	Write END in the end of main program.	
$\left(\begin{matrix} \text{Checked at RUN} \\ \rightarrow \text{STOP} \end{matrix}\right)$	12	122	A sub program has been allocated in the parameters and there is no END (FEND) instruction.	Write END in the end of the sub- program.	
"CAN'T EXECUTE(P)"		131	The device number of the pointer (P) or the interrupt pointer (I) used as a label added to the destination head is duplicating.	Remove the duplicated number of pointer (P) with the destination head and correct so that the number is not duplicated.	
Checked at the execution of the instruction	13	132	The label of the pointer (P) specified by CJ SCJ CALL CALLP JMP LEDA/B FCALL and LEDA/B BREAK instructions is not specified prior to the END instruction.	Read the error step using GPPW, check the step and insert the destination pointer (P).	

Error Message Table

Error Message Table (cont.)

Error Message Error Code (D9008) * 1 Details E Code (D9091)		Details Error Code (D9091)) * 1	Error Description and Cause	Remedy	
"CAN'T EXECUTE(P)"		133	 There is no CALL instruction for the RET instruction in the program. There is no FOR instruction for the NEXT, LEDA/B BREAK instructions in the program. The nesting level of CALL, CALLP, or FOR exceeds the nesting limit six (6) and is executing the sixth level. There is no RET or NEXT instructions for the CALL or FOR instruction. 	 (1) Read the error step using GPPW. Check and modify the program step. (2) Nesting level for the CALL, CALLP and FOR instructions must be five (5) or less. 	
	13	134	There is no parameter settings for the sub program. Can not execute the CHG instruction.	Read the error step using GPPW. Delete the line containing the CHG instruction.	
		136	There is no parameter settings for sub program 1. Can not execute the ZCHG1 instruction.	Read the error step using GPPW. Delete the line containing the ZCHG1 instruction.	
		137	There is no parameter settings for sub program 2. Can not execute the ZCHG2 instruction.	Read the error step using GPPW. Delete the line containing the ZCHG2 instruction.	
Checked at the execution of the instruction		138	There is no parameter settings for sub program 3. Can not execute the ZCHG3 instruction.	Read the error step using GPPW. Delete the line containing the ZCHG3 instruction.	
"WDT ERROR" Checked at the execution of the sequence program.	22	220	A program instruction is executed infinitely in a single scan.	Read the error step and confirm there is no occurrence of an infinite loop.	
"END NOT EXECUTE" Checked at the execution of the instruction.	24	241	The entire program has been executed without executing the END instruction.(1) There is no END instruction.(2) The END instruction is replaced with some other instruction.	Please write the program to PLC again.	
"SP.UNIT ERROR" Checked at the execution of the FROM/TO instruction or special function module dedicated instruction.	46	461	There is no special function module in the area specified by the FROM/TO instruction.	 (1) Read the error step using GPPW. Check and modify the FROM/TO instruction in the program step. (2) Correct the I/O unit allocation parameter settings. 	

Error Message	Message Error Code (D9008) * 1 Details Error Code (D9091) * 1		Error Description and Cause	Remedy	
"OPERATION ERROR"		501	 Operations using the file register (R), are executed with the device number or block number exceeding the range specified for the file register (R). The file register is used in the program without setting necessary parameters for the file register (R). 	 (1) Read the error step using GPPW. Check and modify the program step. (2) Set the parameters for the file register (R). 	
		502 503	The combination of devices specified by instruction is incorrect.		
Checked at the			The storage data or constants are not within the usable range.	Check and modify the program	
execution of the instruction		504	The number of data handling settings exceeds the usable range.	siep.	

Error Message Table (cont.)

*1 Characters in parentheses () indicate the special register number where the information is saved.

(2) Ladder Logic Test Tool (LLT) for QnA Series CPU

Frror	Message	Table
	MCSSage	Table

Error Message	Error Code (SD0) *1	Error Description and Cause	Remedy	
	1010	The entire program has been executed without executing the END instruction.	Please write the program to PLC again	
	1011	(2) The END instruction is replaced with		
	1012	some other instruction.		
	2110	There is no special function module in the area specified by the FROM/TO instruction.	 Read the error step and correct the contents of the FROM/TO instruction. Correct the I/O unit parameter settings. 	
SP.UNIT ERROR	2111	There is no network function module in the area specified by the link direct device (J # \ #).	Check and modify the FROM/TO instruction in the program step.	
	2112	There is no network function module or the unit in the area specified is not supporting the instruction.	Check and modify the special function unit dedicated instruction in the error step of	
	2113	There is no simulation data for the special function unit simulation.	the program.	
MISSING PARA.	2200	Parameter file is missing.	Please write the parameter again.	
FILE SET ERROR	2400	The file specified in the parameter settings is not available.	 Please delete the file name from the parameter settings. Make a file as specified in the parameter settings. 	
FILE OPE.ERROR	2410	The file specified in the sequence program is not available.	(1) Check and modify the specified file name.(2) Create the specified file.	
	2500	A program file exists with a device which exceeds the device range specified in the device parameter settings.	Read common information of error using GPPW. Check and correct the device by comparing device allocation parameter settings.	
CAN'T EXE.PRG.	2501	Multiple program files exist. But, the program settings parameter is set to "None".	Change the parameter settings to "Present" or delete unnecessary programs.	
	2502	The program is incompatible with QnA CPU or the file content is not a sequence program.	Please write the program again.	
	2503	No program files exist.	Please check the program configuration.	
	2504	Two or more Ordinary/Control SFC programs were executed.	Please check the parameter and program configuration.	
PARAMETER ERROR	3001	Parameter data is corrupted.	Please write the parameter again.	
INSTRCT CODE ERR.	4000	The program contains an instruction code which cannot be decoded by the CPU.	Please write the program again.	
MISSING END INS.	4010	The program contains no "END (FEND)" instruction.	Please check and correct the program.	
CAN'T SET(P)	4020	The total number of pointers used in the program files exceeds the maximum allowable number defined in the parameter settings.	Check the error step and correct the program.	
	4021	ovenapping or common pointers exist.		

Error Message Table (cont.)

Error Message	Error Code (SD0) *1	Error Description and Cause	Remedy			
	4100	An instruction contains data that cannot be processed.				
OPERATION ERROR	4101	The instruction data exceeds the allowable number of data handled. Or the storage data constants specified in the instruction exceeds the usable range.	Check the error step and correct the			
	4102	Incorrect network number or station number is specified in a network dedicated instruction.	program.			
	4103	Illegal configuration of PID dedicated instruction.				
	4200	A FOR instruction is executed without NEXT instruction. Or the number of NEXT instructions is lower than the number of FOR instruction.	Check the error step and correct the			
FOR NEXT ERROR	4201	A NEXT instruction is executed without a FOR instruction. Or the number of NEXT instructions is greater than the number of FOR instructions.	program.			
	4202	The nesting exceeds 16 loops.	Reduce nesting count to 16 or less loops.			
	4203	A BREAK instruction is executed when there is no FOR instruction.	educe nesting count to 16 or less loops. heck the error step and correct the ogram.			
	4210	A CALL instruction is executed without a destination pointer.	Check the error step and correct the program.			
CAN'T EXECUTE (P)	4211	The executed subroutine program contains no RET instruction.				
	4212	A RET instruction is existing before the FEND instruction.				
	4213	The nesting exceeds 16 loops.	Reduce nesting count to 16 or less loops.			
	4230	Mismatch in the number of CHK and CHKEND instructions				
	4231	Mismatch in the number of IX and IXEND instructions.				
	4232	The structure of FOR - NEXT instructions is incorrect.	Check the error step and correct the			
	4233	The structure of DO - WHILE instructions is incorrect.	program.			
INST. FORMAT ERROR	4234	The structure of SELECT- CASE instructions is incorrect.				
	4235	The check condition for the CHK instruction is incorrect.				
	4236	The nesting exceeds 16 loops	Reduce nesting to 16 or less loops.			
	4237	An EXITFOR instruction is executed when				
	4238	An EXITDO instruction is executed when there is no existence of DO instruction.	program.			

Error Message Error Code (SD0) * 1		Error Description and Cause	Remedy	
WDT ERROR	5000	An instruction in a program of initial execution type is infinitely executed in a single scan.	Read the error step and confirm there is no occurrence of an infinite loop.	
	5001	An instruction in the program is infinitely executed in a single scan.	Read the error step and confirm there is no occurrence of an infinite loop.	
F***	9000	Annunciator is turned ON by the program.	Check the user condition that turns On the annunciator and make corrective action for that condition.	

Error Message Table (cont.)

*1 Characters in parentheses () indicate the special register number where the information is saved.

(3) Ladder Logic Test Tool (LLT) for FX Series CPU Functions

	Error Code					
Error Message	(D8065,	Error Description and Cause	Remedy			
	D8066) * 1					
WDT ERROR	6105	Occurrence of an infinite loop.	Check the program or contents of the			
			operands in the application instruction.			
FILE NOT FOUND	6409	Illegal parameter settings.	Correct the parameter settings and write			
	6502	Data instruction code is corrupted	Transfer the program from GPPW/ again			
	0303	Data instruction code is contupled.	Check the program and correct the			
EXIST SAME LABEL No.	6504	Overlapping label numbers.	Check the program and correct the			
		(1) There is no RET instruction				
STI -MC INST FRROR	6505	(2) MC and MCR instructions are	Check the program and correct the mutual			
		designated within an STL state.	instructions.			
		Illegal occurrence of FOR to NEXT				
FOR NEXT ERROR	6607	instructions. FOR to NEXT nesting	Check the program or contents of the			
		exceeds the maximum nesting level of 6.	operands in the application instruction.			
	6704	No jump destination is specified for CJ or	Check the program or contents of the			
OPERATION ERROR	6701	CALL instruction.	operands in the application instruction.			
	6702	The nestings of CALL instructions exceed	Check the program or contents of the			
CANTEXECUTE (P)	6702	the maximum nesting level of 6.	operands in the application instruction.			
	6704	FOR - NEXT nestings exceed the	Check the program or contents of the			
FOR NEXT ERROR	0704	maximum nesting level of 6.	operands in the application instruction.			
	6705	An incompatible device is specified as an				
	0705	operand of an application instruction.				
		A device is specified outside the allowable	Check the program or contents of the			
OPERATION ERROR	6706	range of an application instruction	an application instruction Check the program or contents of the operands in the application instruction.			
		operand.				
	6707	A file register which is not defined in the				
	0101	parameter settings is accessed.				
SP. UNIT ERROR	6708	FROM - TO instruction error.	Check the program or contents of the			
-			operands in the application instruction.			
		(1) Illegal nesting of FOR - NEXT				
OPERATION ERROR	6709	instructions.	Check the program or contents of the			
		(2) Illegal nesting of CALL - SRET	operands in the application instruction.			
		instructions.				

Error Message Table

*1 Characters in parentheses () indicate the special register number where the information is saved.

Errors not displayed on the LED indicators are stored as operation error codes in the special data register D8067.

Devices related to error displays (see Appendix 1)

- M8067 : Operation error generated
- M8068 : Operation error latch
- D8067 : Operation error code number
- D8068 : Latch for step number where operation error was generated
- D8069 : Step where M8067 error was generated

(4) Ladder Logic Test Tool (LLT) for Q Series CPU (A Mode) Functions

The error codes of the Q series CPU (A mode) are the same as those of the A series CPU. Refer to the error message list of the ladder logic test tool (LLT) for A series CPU functions in Section 8.1(1).

(5) Ladder Logic Test Tool (LLT) for Q Series CPU (Q Mode) Functions

Refer to the QnA for the error message list. Note that the following error message is specific to the Q mode.

SP PARA. ERROR (future extension)	3301	There is an error in the intelligent function utility settings.	 Check and correct the intelligent function unit settings. Check and correct the parameter settings (I/O allocation, Device settings).
--------------------------------------	------	---	--

APPENDICES

Appendix 1 List of Supported Devices

The ladder logic test tool (LLT) supports the devices for an A Series CPU, QnA Series CPU, Q Series CPU, and FXCPU.

(Non-supported devices are reserved as devices for reading and writing only.) For the motion controller CPU, refer to the compatible devices of the A Series CPU. For the compatible CPU, refer to Section 2.2.

The devices supported by the ladder logic test tool (LLT) are listed in Appendix Table 1.1 to Appendix Table 1.13.

Appendix 1.1 The A Series CPU function ladder logic test tool (LLT)

(1) Device list

Appendix Table 1.1 List of Devices Supported by the Ladder Logic Test Tool (LLT)

		Device range (p	ooints)						
Device		A0J2H A1FX	A1N A1S A1SJ	A2C A2CJ A2S	A2N(S1)	A3N A1SH A1SJH A2SH	A2A(S1)	A3A	A2U(S1) A2US(S1) A2USH-S1 A3U A4U
	Input (X) * 1	X0 to X1FF	X0 to XFF	X00 to X1FF	X00 to X3FF	X0 to X7FF	X00 to X3FF	X00 to X7FF	X00 to X1FFF
		(512 points)	(256 points)	(512 points)	(1024 points)	(2048 points)	(1024 points)	(2048 points)	(8192 points)
	Output (Y) * 1	Y0 to Y1FF	Y0 to YFF	Y00 to Y1FF	Y00 to Y3FF	Y0 to Y7FF	Y00 to Y3FF	Y00 to Y7FF	Y00 to Y1FFF
/ice	ouput(!)	(512 points)	(256 points)	(512 points)	(1024 points)	(2048 points)	(1024 points)	(2048 points)	(8192 points)
Bit dev	Internal relay (M)		M0 to M2047	(2048 points)			M0 to M8191	(8192 points)	
	Special relay (M)				M9000 to M92	55 (256 points)			
	Link relay (B)		B0 to B3FF (1024 points)				B0 to BFFF (4096 points) B0 to 8FFF (4096 points)		B0 to B1FFF (8192 points)
	Annunciator (F)		F0 t	o F255 (256 pc	ints)		F0 to F2047 (2048 points)		
	Timer (T)		T0 t	o T255 (256 pc	ints)		T0 to T2047 (2048 points)		oints)
	Counter (C)		C0 t	o C255 (256 pc	pints)		C0 to	C0 to C1023 (1024 points)	
	Data register (D)		D0 to	D1023 (1024 p	points)		D0 to D6143 (6144 points) D0 to (8192		D0 to D8191 (8192 points)
vice	Special register (D)				D9000 to D92	55 (256 points)	•	(
Vord de	Link register (W)		W0 to W3FFF (1024 points)					(8192 points)	W0 to W1FFF (8192 points)
>	File register (R)	R0 to R8191 (8192 points)							
	Extension file register	Block 1 to 64 (8k points) * 2							
	Accumulator (A)				A0, A1 (2 points)			
	Index register (Z, V)			Z, V (2 points)			Z, Z1 to Z	6, V, V1 to V6	(14 points)
Ne	sting (N)				N0 to N7	(8 points)			
Pointer (P)					P0 to P255	(256 points)			
De	cimal constant (K)			ł	K-2147483648	to K214748364	7		
He	xadecimal constant (H)				H0 to HF	FFFFFF			
Character string constant					"ABC"	, "123"			

* 1 : Remote I/O is included.

*2 : In the SW2D5 -GPPW, the data of file register can be written in the block No. 1 through 48 only.

(2) Special Relay List

Appendix Table 1.2 lists the special relays supported by the ladder logic test tool (LLT) for the A Series CPU functions. See the A Series actual PLC Users Manual for details about the special relays.

Appendix Table 1.2 List of S	pecial Relays Supported b	v the Ladder Logic Test Tool (LLT)

Number	Name	Description	
M9008	Self-diagnostic error	OFF :No error ON :Error	
140000	Annunciator	OFF :Not detected	
M9009	detected	ON :Detected	
M9010	Operation error flag	OFF :No error	
M9011	Operation error flag	OFF :No error ON :Error	
M9012	Carry flag	OFF :Carry OFF ON :Carry ON	
M9020	User timing clock No. 0		
M9021	User timing clock No. 1		
M9022	User timing clock No. 2	n2 scan n2 scan	
M9023	User timing clock No. 3		
M9024	User timing clock No. 4		
M9028	Clock data read request	OFF :No processing ON :Read request	
M9030 *1	0.1-second clock	0.05 0.05 Sec Sec	
M9031 *1	0.2-second clock	0.1 0.1 sec sec	

Number	Name	Description
M9032 *1	1-second clock	0.5 0.5 sec sec
M9033 *1	2-second clock	1 1 sec sec
M9034 *1	1-minute clock	30 30 sec sec
M9036	Normally ON	ON OFF
M9037	Normally OFF	ON OFF
M9038	ON one scan only after RUN	ON OFF 1 scan
M9039	RUN flag (OFF one scan only after RUN)	ON OFF
M9042	Stop status contact	OFF :Not stop status ON :Stop status
M9051	CHG instruction execution disabled	OFF :Enabled ON :Disabled
M9054	STEP RUN flag	OFF :Not STEP RUN ON :STEP RUN
M9091	Instruction error flag	OFF :No error ON :Error

*1 : The values obtained are based on the set values of a constant scan.

(3) Special Register List

Appendix Table 1.3 lists the special registers supported by the ladder logic test tool (LLT) for the A Series CPU functions. See the A Series actual PLC Users Manual for details about the special registers.

Appendix Table 1.3	List of Specia	Reaisters	Supported by	the Ladder	Loaic Test 7	Fool (LLT)

Number	Name	Description
09008	Self-diagnostic error	Self-diagnostic error
D3000		number
	Annunciator	F number from
D3003	detected	external breakdown
		Step number where
D9010	Error step	operation error
		occurred
		Step number where
D9011	Error step	operation error
		occurred
D9015	CPU operation	CPU operation status
20010	status	
	Program number	Saves the BIN value
D9016		of the executing
		sequence program.
D9017	Scan time	Minimum scan time
*2		(10 ms units)
D9018	Scan time	Scan time
*2	ocantine	(10ms units)
D9019	Maximum scan timo	Maximum scan time
*2		(10ms units)
D0020		Constant scan time
D9020	Constant scan	(user settable in 10
40		ms units)
D9021	Scan time	Scan time
*2		(1 ms units)
D9022	1 cocord counter	Number of counts in
*1		1-second intervals
D0025	Clock data	Clock data
D9025	CIUCK Uala	(year, month)

		·g.• · ••• · ••• (== ·)
Number	Name	Description
D9026	Clock data	Clock data (day, hour)
D9027	Clock data	Clock data (minute, second)
D9028	Clock data	Clock data (, day of week)
D9035	Extension file register	Block No. used
D9036	Designates device number of	Device number for direct access of each
D9037	extension file register.	extension file registers device.
D9091	Detailed error number	Self-diagnosis detailed error number
D9124	Quantity of annunciators detected	Quantity of annunciators detected
D9125		
D9126		
D9127		
D9128	Number of detected	Number of detected
D9129	annunciators	annunciators
D9130		
D9131		
D9132		

*1 : Value derived from the constant scan set value.

*2 : Value equal to all constant scan set values. Default value is 100 ms.

*3: The set constant time becomes the time for one scan.

Appendix 1.2 The QnA Series CPU function ladder logic test tool (LLT)

(1) Device list

Appendix Table 1.4 List of Devices Supported by the Ladder Logic Test Tool (LLT)

Device Name		Device Range (Points)	Remarks	
	Input (X)	X0 to X1FFF (8192 points)	Actual inputs are disabled.	
	Output (Y)	Y0 to Y1FFF (8192 points)	Actual outputs are disabled.	
	Internal relay (M)	M0 to M32767 (32768 points)	—	
	Latch relay (L)	L0 to L32767 (32768 points)	—	
	Annunciator (F)	F0 to F32767 (32768 points)	_	
vice	Edge relay (V)	V0 to V32767 (32768 points)	—	
sit de	Link special relay (SB)	SB0 to SB7FFF (32768 points)		
ш	Link relay (B)	B0 to B7FFF (32768 points)	_	
	Special relay (SM)	SM0 to SM2047 (2048 points)	See (b) Special Relay List for details about the special relays supported.	
	Function input (FX)	FX0 to FXF (16 points)	—	
	Function output (FY)	FY0 to FYF (16 points)	_	
	Data register (D)	D0 to D32767 (32768 points)	_	
	Special register (SD)	SD0 to SD2047 (2048 points)	See (c) Special Register List for details about the special registered supported.	
	Link register (W)	W0 to W7FFF (32768 points)	—	
Ge	Link special register (SW)	SW0 to SW7FFF (32768 points)	—	
devi	Timer (T)	T0 to T32767 (32768 points)	—	
ord	Retentive timer (ST)	(ST0 to ST32767) (0 points)	—	
Š	Counter (C)	C0 to C32767 (32768 points)	—	
	Function register (FD)	FD0 to FD4 (5 points)	—	
	File register (R)	R0 to R1042431 (1042432 points)	—	
	Buffer register (Un\G)	Un\G0 to Un\G16383 (16384 points)	I/O assignments must be set for the parameters.	
	Index register (Z)	Z0 to Z15 (16 points)	—	
Ne	sting (N)	N0 to N14 (15 points)	_	
Po	inter (P)	P0 to P4095 (4096 points)	—	
De	cimal constant (K)	K-2147483648 to K2147483647	_	
He	xadecimal constant (H)	H0 to HFFFFFFF	_	
Re	al number constant	E±1.17549-38 to E±3.40282+38	—	
Ch	aracter string constant	"ABC", "123"	Maximum 16 characters per instruction.	

(2) Special Relay List

Appendix Table 1.5 lists the special relays supported by the ladder logic test tool (LLT) for the QnA Series CPU functions. See the QnA Series actual PLC Users Manual for details about the special relays.

Appendix Table 1.5 List of Special Relays Supported by the Ladder Logic Test Tool (LLT)

Number	Name	Description	Number	Name	Description
SM0	Diagnostic error	OFF :No error ON :Error	SM405	OFF one scan only after RUN	ON OFF ───────────────────────────────────
SM1	Self-diagnostic	OFF :No self-diagno- stic error	SM410 *1	0.1-second clock	0.05 0.05 sec sec
OWN	error	ON :Self-diagnostic error	SM411 *1	0.2-second clock	0.1 0.1 sec sec
	Error common	OFF :No error common	SM412 *1	1-second clock	0.5 0.5 sec sec
SM5	information	information ON :Error common	SM413 *1	2-second clock	1 1 sec sec
		information OFF :No error	SM414 *1	2n-second clock	sec sec
SM16	Error individual	individual information	SM420	User timing clock No.0	
		ON :Error individual information	SM421	User timing clock No.1	
SM50	Error reset	$OFF \rightarrow ON$:Error reset	SM422	User timing clock No.2	
SM56	Operation error	OFF :Normal ON :Operation error	SM423	User timing	
SM62	Annunciator detected	OFF :Not detected ON :Detected	SM424	User timing	n2 scann2 scan
SM203	STOP contacts	STOP status		Lisor timing	
SM205	STEP-RUN	STEP-RUN status	SM430	clock No.5	n1 scan
SM213	Clock data read	OFF :No processing	SM431	User timing clock No.6	-
SM400	Normally ON	ONON	SM432	User timing clock No.7	
SM401	Normally OFF	ON OFF	SM433	User timing clock No.8	
SM402	ON one scan only after RUN	ON OFF 1 scan	SM434	User timing clock No.9	
SM403	OFF one scan only after RUN	ON OFF ───────────────────────────────────	SM510	Low-speed prog- ram execution flag	OFF :Complete or no execution ON :Executing
SM404	ON one scan only after RUN	ON OFF 1 scan	L	1	Lexoluting

Number	Name	Description
SM640	Use file register	OFF :File registers not used ON :File registers used
SM700	Carry flag	OFF :Carry OFF ON :Carry ON
SM703	Sort order	OFF :Ascending ON :Descending
SM704	Block comparison	OFF :Some do not match ON :All match
SM715	El flag	OFF :DI ON :EI
SM776	Local device enable/disable setting at CALL time	OFF :Local device disable ON :Local device enable
SM1008	Self-diagnostic error	OFF :No error ON :Error
SM1009	Annunciator detected	OFF :Not detected ON :Detected
SM1010	Operation error	OFF :Normal ON :Operation error
SM1020	User timing clock No.0	
SM1021	User timing clock No.1	
SM1022	User timing clock No.2	n2 scann2 scan ▲↓▲ n1 scan
SM1023	User timing clock No.3	
SM1024	User timing clock No.4	

Appendix Table 1.5 List of Special Relays Supported by the Ladder Logic Test Tool (LLT) (cont.)

Number	Name	Description
SM1030	0.1-second clock	0.05 0.05 sec sec
SM1031	0.2-second clock	0.1 0.1
SM1032	1-second clock	0.5 0.5 Séc Séc
SM1033	2-second clock	1 1 sec sec
SM1034	2n-second clock	sec sec
SM1036	Normally ON	ON OFF
SM1037	Normally OFF	ON OFF
SM1038	ON one scan only after RUN	ON OFF 1 scan
SM1039	OFF one scan only after RUN	ON OFF → 1 scan
SM1042	Stop status contact	OFF :Not stop status ON :Stop status
SM1054	STEP RUN flag	ON :STEP RUN OFF :Not STEP RUN

(3) Special Register List

Appendix Table 1.6 lists the special registers supported by the ladder logic test tool (LLT) for the QnA Series CPU functions. See the QnA Series actual PLC Users Manual for details about the special registers.

Appendix table 1.6	List of Special	Registers	Supported by the	he Ladder Logic	Test Tool (LLT)
				0	· · · · · · · · · · · · · · · · · · ·

Number	Name	Description	Number	Name	Description	
SD0	Diagnostic error	Diagnostic error	SD70			
004		number	SD71			
SD1	Time the diagnostic	Time the diagnostic	SD72			
SD2	error occurred	error occurred	SD73			
SD3			SD74	Annunciator	Annunciator detected	
SD4	Error information	code	SD75	detected number	number	
SD5			SD76			
SD6			SD77			
SD7			SD78			
SD8	-		SD79			
SD9	-		SD200	Switch status	CPU switch status	
SD10	Error common	Error common	SD203	CPU operating	CPU operating status	
SD11	mornation	Information		status	*3 Clock data	
SD12			SD210	Clock data	(year, month)	
SD13			SD211	Clock data	Clock data	
SD14			ODZII		(day, hour)	
SD15			SD212	Clock data	(minute second)	
SD16			00040	Clock data	Clock data	
SD17			50213		(, day of week)	
SD18			SD290		No. of X points	
SD19				-	No. of Y points	
SD20	-		SD291		assigned	
SD21	Error independent	Error independent	rror independent		No. of M points	
SD22	Information	information		-	assigned	
SD23			SD293		assigned	
SD24			\$D204		No. of B points	
SD25	-		50234	Device assignment	assigned	
SD26			SD295	5	No. of F points	
SD50	Error reset	Reset error number	00000		No. of SB points	
SD62	Annunciator No.	Annunciator No.	SD296		assigned	
0000	Annunciator		SD297		No. of V points	
5063	quantity	Annunciator quantity			Assigned	
SD64	-		SD298		assigned	
SD65			\$0200	20200	No. of T points	
SD66	Annunciator	Annunciator detected	00233		assigned	
SD67	table	number	*1:Value	derived from the const	ant scan setting value and	
SD68			*2 : Value	s equal to all constant	scan setting values.	
SD69			*3 : SD20	*3 : SD203 supports the CPU operation status only.		

*3 : SD203 supports the CPU operation status only.

STOP/PAUSE cause is fixed at 0.

Number	Name	Description	Number	Name	Description	
00000		No. of ST points	SD532		Minimum low-speed	
SD300		assigned	*2	Minimum low-speed	scan time (1 ms units)	
80204		No. of C points	SD533	scan time	Minimum scan time	
50301		assigned	*2		(1 μs units)	
50202		No. of D points	SD534		Maximum scan time	
30302	Device assignment	assigned	*2	Maximum low-	(1 ms units)	
50203		No. of W points	SD535	speed scan time	Maximum scan time	
30303	-	assigned	*2		(1 μs units)	
SD304		No. of SW points assigned	SD647	File register capacity	File register capacity	
SD412	1 accord counter	Number of counts in	SD649	File register block	File register block	
*1	T-Second counter	1-second intervals	5D646	number	number	
SD414 ★1	2n-second clock	2n-second clock units	SD1008	Self-diagnostic error	Self-diagnostic error	
* 1	setting	Number of scaps	SD1000	Appunciator No		
SD420	Scan counter	counted	301009	Annunciator No.		
	Low-speed scan	Number of scans	SD1015	CPU operation	CPU operation status	
SD430	counter	counted	SD1017	Sidius	Minimum coon timo	
	Executed program	Program execution	*2	Scan time	(10 ms units)	
SD500	number	tvpe.	SD1018		Scan time	
	Low-speed program	Current low-speed	*2	Scan time	(10 ms units)	
SD510	number	execution file name	SD1019		Maximum scan time	
SD520		Present scan time	*2	Scan time	(10 ms units)	
*2		(1 ms units)	SD1021		Scan time	
SD521	Present scan time	Present scan time	*2	Scan time	(1 ms units)	
*2		(1 μs units)	SD1022		Number of counts of	
SD522		Initial scan time	*2	1-second counter	1-second units	
*2	Initial scan time	(1 ms units)	004005	Extension file		
SD523	miliai sean ime	Initial scan time	SD1035	register	Used block number	
*2		(1 μs units)	SD1124	Number of annun-	Number of annun-	
SD524		Minimum scan time	301124	ciators detected	ciators detected	
*2	Minimum scan time	(1 ms units)	SD1125			
SD525		Minimum scan time	SD1126			
*2		(1 μs units)	SD1127	1		
SD526		Maximum scan time	SD1128	Number of annun-	Number of annun-	
*2	Maximum scan time	(1 ms units)	SD1120	ciators detected	ciators detected	
SD527		Maximum scan time	SD1129			
*2		(1 μs units)	501130	4		
SD528		Current scan time	SD1131	4		
*2	Current low-speed	(1 ms units)	SD1132			
SD529	scan time	Current scan time	*1 · \/alua	dorived from the const	ant econ potting value on	

Appendix Table 1.6 List of Special Registers Supported by the Ladder Logic Test Tool (LLT) (cont.)

*1 : Value derived from the constant scan setting value and number of scans.

*2 : Values equal to all constant scan setting values.

*3 : SD203 supports the CPU operation status only. STOP/PAUSE cause is fixed at 0.

(1 µs units)

*2

Special relays/registers that have contents different from those of Q4ACPU will operate by the contents of special relays/registers of Q4ACPU.

Appendix 1.3 FX Series CPU function ladder logic test tool (LLT)

(1) Device list

Appendix Table 1.7 List of Devices Supported by the Ladder Logic Test Tool (LLT) (CPU type: FX_0/FX_{0S})

Device Name			Device Range (Points)	Remarks
	Input (X)		X000 to X017 (16 points)	Octal number. Actual inputs are disabled.
ce	Output (Y)		Y000 to Y015 (14 points)	Octal number. Actual outputs are disabled.
devi	A	General purpose	M0 to M495 (496 points)	
Bit	Auxiliary relay	Hold * 1	M496 to M511 (16 points)	_
	(11)	Special	M8000 to M8255 (57 points)	
		Initial state	S0 to S9 (10 points)	-
	State (S)	General purpose	S10 to S63 (54 points)	_
	Time on (T)	100 ms	T0 to T55 (56 points)	—
	Timer (T)	10 ms	T32 to T55 (24 points)	M8028 drive
Ð	Counter (C)	16-bit up	C0 to C13 (14 points)	
evic		16-bit up*1	C14 to C15 (2 points)	
Word d	Data register	16-bit general purpose	D0 to D29 (30 points)	
	(D) (32-bit for	16-bit hold * 1	D30 to D31 (2 points)	_
	pair use)	16-bit special	D8000 to D8255 (27 points)	-
		16-bit index	V, Z (2 points)	
Nesting (N) For master of		For master control	N0 to N7 (8 points)	—
Pointer (P)		For JMP, CALL branching	P0 to P63 (64 points)	-
Decimal constant		16 bits	-32768 to 32767	_
(K)	1	32 bits	-2147483648 to 2147483647	_
Hexadecimal 1		16 bits	H0 to HFFFF	_
constant (H) 32 bits		32 bits	H0 to HFFFFFFF	_

*1 Fixed battery backup area. This area cannot be changed.

Appendix Table 1.8	List of Devices Supported by the Ladder Logic Test Tool (LLT)
	(CPU type: FX _{0N})

Device Name			Device Range (Points)	Remarks
device	Input (X) Total number of expansion X000 to X177 (128 points)		Octal number. Actual inputs are disabled.	
	output (Y)	Total number of points with expansion	Y000 to Y177 (128 points)	Octal number. Actual outputs are disabled.
Β	.	general purpose	M0 to M383 (384 points)	
	Auxiliary relay	Hold * 1	M384 to M511 (128 points)	_
	(171)	Special	M8000 to M8255 (67 points)	
	0	Initial state *1	S0 to S9 (10 points)	
	State (S)	General purpose *1	S10 to S127 (118 points)	_
		100 ms	T0 to T62 (63 points)	—
	Timer (T)	10 ms	T32 to T62 (31 points)	M8028 drive
		1 ms	T63 (1 point)	_
a)	Counter (C)	16 bit up	C0 to C15 (16 points)	
∋vic		16bit up *1	C16 to C31 (16 points)	
Nord de	.	16-bit general purpose	D0 to D127 (128 points)	
_	Data register	16-bit hold * 1	D128 to D255 (128 points)	
	(D) (32-bit for	16-bit special	D8000 to D8255 (106 points)	
	pair use)	File*1	D1000 to D2499 (1500 points)	-
		16-bit index	V, Z (2 points)	
Nesting (N) For		For master control	N0 to N7 (8 points)	_
Pointer (P)		For JMP, CALL	P(t) = P(t) (f(t) = p(t))	_
		branching	F0 10 F63 (64 points)	
Decimal constant		16 bits	-32768 to 32767	_
(K)		32 bits	-2147483648 to 2147483647	_
He	exadecimal	16 bits	H0 to HFFFF	_
constant (H)		32 bits	H0 to HFFFFFFF	—

*1 Fixed battery backed-up area. This area cannot be changed.

Appendix Table 1.9	List of Devices Supported by the Ladder Logic Test Tool (LLT)
	(CPU type: FX ₁)

Device Name			Device Range (Points)	Remarks
	Input (X) Total number of points with X000 to expansion		X000 to X177 (128 points)	Octal number. Actual inputs are disabled.
	Output (Y)	Total number of points with expansion	Y000 to Y177 (128 points)	Octal number. Actual outputs are disabled.
evice	A I	General purpose	M0 to M499 (500 points)	
it d€	Auxiliary relay	Hold *1	M500 to M1023 (524 points)	_
B	(171)	Special	M8000 to M8255 (156 points)	
		Initial state *1	S0 to S9 (10 points)	
	State (S)	General purpose *1	S10 to S499 (490 points)	_
		Hold *2	S500 to S899 (400 points)	
		Annunciator *3	S900 to S999 (100 points)	
	Timor (T)	100 ms	T0 to T199 (200 points)	
	Timer (T)	10 ms	T200 to T245 (46 points)	
υ	Countar (C)	16 bits up *1	C0 to C99 (100 points)	
evio	Counter (C)	16 bits up *2	C100 to C125 (36 points)	
Nord de	Data register	16-bit general purpose *1	D0 to D99 (100 points)	
	(D) (32 bit for pair	16-bit hold *2	D100 to D127 (28 points)	_
		16-bit special	D8000 to D8255 (106 points)	
	use)	16-bit index	V, Z (2 points)	
Nesting (N)		For master control	N0 to N7 (8 points)	_
Pointer (P)		For JMP, CALL	P0 to P63 (64 points)	
		branching		
Decimal constant		16 bits	-32768 to 32767	
(K))	32 bits	-2147483648 to 2147483647	—
He	exadecimal	16 bits	H0 to HFFFF	_
constant (H) 32		32 bits	H0 to HFFFFFFF	—

*1 : Area not backed-up by battery. This area can be changed to battery backed-up area by parameter settings.

*2 : Battery backed-up area. This area can be changed to non-backed-up area by parameter settings.

*3 : Fixed battery backup area. This area cannot be changed.

Appendix Table 1.10	List of Devices Supported by the Ladder Logic Test Tool (LLT)
	(CPU type: FX/FX ₂ /FX _{2C})

Device Name			Device Range (Points)	Remarks		
	Input (X)	Total number of points with expansion	X000 to X377 (256 points)	Octal number. Actual inputs are disabled.		
	Output (Y)	Total number of points with expansion	Y000 to Y377 (256 points)	Octal number. Actual outputs are disabled.		
vice	A	General purpose *1	M0 to M499 (500 points)			
de	Auxiliary relay	Hold *2	M500 to M1023 (524 points)	—		
Β	(1VI)	Hold *3	M1024 to M1535 (512 points)			
		Special	M8000 to M8255 (156 points)			
		Initial state *1	S0 to S9 (10 points)			
	State (S)	General purpose *1	S10 to S499 (490 points)	_		
		Hold *2	S500 to S899 (400 points)			
		Annunciator *3	S900 to S999 (100 points)			
		100 ms	T0 to T199 (200 points)			
		10 ms	T200 to T245 (46 points)			
	Timer (T)	1 ms retentive *3	T246 to T249 (4 points)	—		
		100 ms retentive *3	T250 to T255 (6 points)			
		16-bit up *1	C0 to C99 (100 points)			
		16-bit up *2	C100 to C199 (100 points)			
evice	Counter (C)	32-bit bi-directional *1	C200 to C219 (20 points)	_		
/ord d€		32-bit bi-directional *2	C220 to C234 (15 points)			
V		16-bit general purpose *1	D0 to D199 (200 points)			
	Data register	16-bit hold *2	D200 to D511 (312 points)			
	(D)	16-bit hold *3	D512 to D999 (488 points)	_		
	(32-bit for pair	16-bit special	D8000 to D8255 (106 points)			
	use)	File *3	D1000 to D2999 (2000 points)			
		RAM file	D6000 to D7999 (2000 points)			
		16-bit index	V, Z (2 points)			
Nesting (N) For master control		For master control	N0 to N7 (8 points)	_		
Pointer (P)		For JMP, CALL	P0 to P127 (128 points)	_		
		branching				
De	cimal constant	16 bits	-32768 to 32767	—		
(K)	1	32 bits	-2147483648 to 2147483647	—		
He	xadecimal	16 bits	H0 to HFFFF	—		
constant (H) 32 bit		32 bit	H0 to HFFFFFFF	—		

*1 : Area not backed-up by battery. This area can be changed to battery backed-up area by parameter settings.

- *2 : Battery backed-up area. This area can be changed to non-backed-up area by parameter settings.
- *3 : Fixed battery backup area. This area cannot be changed.

Device Name			Device Range (Points)	Remarks
	Input (X)	Total number of points with expansion	X000 to X377 (256 points)	Octal number. Actual inputs are disabled.
	Output (Y)	Output (Y) Total number of points with Y000 to Y377 (256 points) expansion		Octal number. Actual outputs are disabled.
svice	A	General purpose *1	M0 to M499 (500 points)	
t de	Auxiliary relay	Hold *2	M500 to M1023 (524 points)	—
ä	(1VI)	Hold *3	M1024 to M3071 (2048 points)	
		Special	M8000 to M8255 (156 points)	
		Initial state *1	S0 to S9 (10 points)	
	State (S)	General purpose *1	S10 to S499 (490 points)	_
		Hold *2	S500 to S899 (400 points)	
		Annunciator *3	S900 to S999 (100 points)	
		100 ms	T0 to T199 (200 points)	
	Timer (T)	10 ms	T200 to T245 (46 points)	
		1 ms retentive *3	T246 to T249 (4 points)	—
		100 ms retentive *3	T250 to T255 (6 points)	
		16-bit up *1	C0 to C99 (100 points)	
Ð		16-bit up *2	C100 to C199 (100 points)	
devic	Counter (C)	32-bit bi-directional *1	C200 to C219 (20 points)	_
Word		32-bit bi-directional *2	C220 to C234 (15 points)	
	Data register	16-bit general purpose *1	D0 to D199 (200 points)	
	(D)	16-bit hold *2	D200 to D511 (312 points)	
	(32-bit for pair	16-bit hold *3	D512 to D7999 (7488 points)	
	use)	16-bit special	D8000 to D8255 (106 points)	
		16-bit index	V0 to V7, Z0 to Z7 (16 points)	
Nesting (N) For ma		For master control	N0 to N7 (8 points)	—
Pointer (P)		For JMP, CALL branching	P0 to P127 (128 points)	—
De	cimal constant	16 bits	-32768 to 32767	—
(K))	32 bits	-2147483648 to 2147483647	—
He	xadecimal	16 bits	H0 to HFFFF	—
constant (H)		32 bit	H0 to HFFFFFFF	—

Appendix Table 1.11 List of Devices Supported by the Ladder Logic Test Tool (LLT) (CPU type: $FX_{2N}/FX2_{NC}$)

*1 : Area not backed-up by battery. This area can be changed to battery backed-up area by parameter settings.

*2 : Battery backed-up area. This area can be changed to non-backed-up area by parameter settings.

*3 : Fixed battery backup area. This area cannot be changed.

(2) Special Relay List

Appendix Table 1.12 lists the special relays supported by the ladder logic test tool (LLT) for the FX Series CPU functions. See the FX Series actual PLC Programming Manual for details about the special relays.

Appendix Table 1.12 List of Special Relays Supported by the Ladder Logic Test Tool (LLT)

No.	Name	Description	FX ₀ , FX _{0S}	FX _{0N}	FX ₁	FX, FX ₂ , FX _{2C}	FX _{2N} , FX _{2NC}
M8000	RUN monitor N/O contact	OFF :STOP ON :RUN			0		
M8001	RUN monitor N/C contact	OFF :RUN ON :STOP			0		
M8002	Initial pulse N/O contact	ON one scan after RUN			0		
M8003	Initial pulse N/C contact	OFF one scan after RUN			0		
M8004	Error occurred	ON if any of M8060 to M8067 operates.			0		
M8011	10 ms clock	5 ms 5 ms			0		
M8012	100 ms clock	50 ms 50 ms			0		
M8013	1 s clock	0.5 s 0.5 s			0		
M8014	1 min clock	30 s 30 s			0		
M8018	Internal real-time clock detected	Normally ON	_	_		Δ	Δ
M8020	Zero	ON if counting result is 0			0		
M8021	Borrow	ON if counting result is less than maximum minus value.			0		
M8022	Carry	ON if counting result increases a digit.			0		
M8023	Decimal-point operation instruction	ON when floating decimal- point instruction is executed.	_	_	_	0	_
M8024	Designate BMOV direction	ON :Write OFF :Read	—	_	—	—	0
M8026	RAMP mode designation	ON :Hold output value OFF :Reset output value	_	_		0	0
M8028	Switch timer instruction	OFF :100 ms base ON :10 ms base	0	0		_	_

 $\ensuremath{\bigcirc}$: This device or function is supported by the actual PLC.

-: This device or function is not supported by the actual PLC.

 Δ : This device is supported by actual PLCs with a clock function.

Appendix Table 1.12	List of Special Relays Supported
	by the Ladder Logic Test Tool (LLT) (cont.)

No.	Name	Description	FX ₀ , FX _{0S}	FX _{0N}	FX1	FX, FX ₂ , FX _{2C}	FX _{2N} , FX _{2NC}
M8029	Instruction execution complete	OFF :Executing ON :Execution complete			0		
M8031	Non-hold memory all clear instruction	OFF :Hold ON :Clear			0		
M8032	Hold memory all clear instruction	OFF :Hold ON :Clear			0		
M8033	Memory hold stop instruction	OFF :Clear ON :Hold			0		
M8034	Disable all outputs instruction	OFF :Output enabled ON :Output OFF			0		
M8038	RAM file clear instruction	OFF :Hold ON :Clear	_	_		0	_
M8039	Constant scan mode designation	OFF :Normal scan ON :Constant scan mode			0		
M8040	Disable transition instruction	OFF :Transition enabled ON :Transition disabled			0		
M8041	Transition start instruction (for IST command)	OFF :Stop ON :Transition start			0		
M8042	Start pulse instruction (for IST command)	ON :IST command start instruction			0		
M8043	Home position return complete instruction (for IST command)	ON :IST command home position return instruction			0		
M8044	Home position condition (for IST command)	ON :Home position OFF :Home position return not complete			0		
M8045	All output reset disabled (for IST command)	ON :Reset disabled OFF :Reset enabled			0		
M8046	STL state operation	ON if any of S0 to S899 operates.			0		
M8047	STL monitor enable	ON :D8040 to D8047 enabled			0		
M8048	Annunciator operation	ON if any of S900 to S999 operates.	_	_	0	0	0

 $\ensuremath{\textup{O}}$: This device or function is supported by the actual PLC.

- : This device or function is not supported by the actual PLC.

 \bigtriangleup : This device is supported by actual PLCs with a clock function.

Appendix Table 1.12	List of Special Relays Supported
	by the Ladder Logic Test Tool (LLT) (cont.)

No.	Name	Description	FX ₀ , FX _{0S}	FX _{0N}	FX1	FX, FX ₂ , FX _{2C}	FX _{2N} , FX _{2NC}
M8049	Annunciator enable instruction	ON :D8049 enabled OFF : D8049 enabled	—	—	0	0	0
M8067	Operation error occurred	ON :Operation error OFF :No operation error			0		
M8068	Operation error latch	Holds M8067 status			0		
M8074	RAM file register setting	ON :Use OFF :Do not use	_	_	_	0	_
M8160	XCH SWAP function setting	ON :8-bit conversion OFF :Normal mode	_	_	_	0	0
M8161	8-bit processing mode	ASC, ASCI, HEX processing method	—	0	—	0	0
M8164	Change number of FROM/TO instruction transfer points	Transfer points switch instruction	_	_	_	_	0
M8168	SMOV HEX data handling functions	Digit shift in 4-bit unit	_	_	_	0	0
M8200	Counting direction of counter	ON :C200 down OFF :C200 up	_	_	_	0	0
M8201	Counting direction of counter	ON :C201 down OFF :C201 up	_	_	_	0	0
M8202	Counting direction of counter	ON :C202 down OFF :C202 up	_	_	_	0	0
M8203	Counting direction of counter	ON :C203 down OFF : C203 up	_	_	_	0	0
M8204	Counting direction of counter	ON :C204 down OFF :C204 up	_	_	_	0	0
M8205	Counting direction of counter	ON :C205 down OFF :C205 up	_	_	_	0	0
M8206	Counting direction of counter	ON :C206 down OFF :C206 up	_	_	_	0	0
M8207	Counting direction of counter	ON :C207 down OFF :C207 up	_	_	_	0	0
M8208	Counting direction of counter	ON :C208 down OFF :C208 up	_	_	_	0	0
M8209	Counting direction of counter	ON :C209 down OFF :C209 up	_	_	_	0	0

 $\ensuremath{\textup{O}}$: This device or function is supported by the actual PLC.

- : This device or function is not supported by the actual PLC.

 \bigtriangleup : This device is supported by actual PLCs with a clock function.

Appendix Table 1.12	List of Special Relays Supported
	by the Ladder Logic Test Tool (LLT) (cont.)

No.	Name	Description	FX ₀ , FX _{0S}	FX _{0N}	FX1	FX, FX ₂ , FX _{2C}	FX _{2N} , FX _{2NC}
M8210	Counting direction of counter	ON :C210 down OFF :C210 up	_	_	_	0	0
M8211	Counting direction of counter	ON :C211 down OFF :C211 up	_	_	_	0	0
M8212	Counting direction of counter	ON :C212 down OFF :C212 up	—	_	—	0	0
M8213	Counting direction of counter	ON :C213 down OFF :C213 up	_	_	_	0	0
M8214	Counting direction of counter	ON :C214 down OFF :C214 up	—	_	—	0	0
M8215	Counting direction of counter	ON :C215 down OFF :C215 up	—	_	_	0	0
M8216	Counting direction of counter	ON :C216 down OFF :C216 up	_	_	_	0	0
M8217	Counting direction of counter	ON :C217 down OFF :C217 up	_	_	_	0	0
M8218	Counting direction of counter	ON :C218 down OFF :C218 up	_	_	_	0	0
M8219	Counting direction of counter	ON :C219 down OFF :C219 up	_	_	_	0	0
M8220	Counting direction of counter	ON :C220 down OFF :C220 up	_	_	_	0	0
M8221	Counting direction of counter	ON :C221 down OFF :C221 up	_	_	_	0	0
M8222	Counting direction of counter	ON :C222 down OFF :C222 up	_	_	_	0	0
M8223	Counting direction of counter	ON :C223 down OFF :C223 up	_	_	_	0	0
M8224	Counting direction of counter	ON :C224 down OFF :C224 up	_	_	_	0	0
M8225	Counting direction of counter	ON :C225 down OFF :C225 up	_	_	_	0	0
M8226	Counting direction of counter	ON :C226 down OFF :C226 up	_	_	_	0	0
M8227	Counting direction of counter	ON :C227 down OFF :C227 up	_	_	_	0	0

 $\ensuremath{\bigcirc}$: This device or function is supported by the actual PLC.

- : This device or function is not supported by the actual PLC.

 \bigtriangleup : This device is supported by actual PLCs with a clock function.

No.	Name	Description	FX ₀ , FX _{0S}	FX _{0N}	FX1	FX, FX ₂ , FX _{2C}	FX _{2N} , FX _{2NC}
M8228	Counting direction of counter	ON :C228 down OFF :C228 up	_	_	_	0	0
M8229	Counting direction of counter	ON :C229 down OFF :C229 up	_	_	_	0	0
M8230	Counting direction of counter	ON :C230 down OFF :C230 up	_	_	_	0	0
M8231	Counting direction of counter	ON :C231 down OFF :C231 up	_	_	_	0	0
M8232	Counting direction of counter	ON :C232 down OFF :C232 up	_	_	—	0	0
M8233	Counting direction of counter	ON :C233 down OFF :C233 up	_	_	_	0	0
M8234	Counting direction of counter	ON :C234 down OFF :C234 up	_	_	_	0	0

Appendix Table 1.12 List of Special Relays Supported by the Ladder Logic Test Tool (LLT) (cont.)

 $\ensuremath{\bigcirc}$:This device or function is supported by the actual PLC.

- :This device or function is not supported by the actual PLC.

 \bigtriangleup :This device is supported by actual PLCs with a clock function.
(3) Special Register List

Appendix Table 1.13 lists the special registers supported by the ladder logic test tool (LLT) for the FX Series CPU functions. See the FX Series actual PLC Programming Manual for details about the special registers.

Appendix Table 1.13 List of Special Registers Supported by the Ladder Logic Test Tool (LLT)

No.	Name	Description	FX ₀ , FX _{0S}	FX _{0N}	FX1	FX, FX ₂ , FX _{2C}	FX _{2N} , FX _{2NC}	
D8000	Watchdog timer	200 ms *1			0			
D8001	PLC type and system version	*2			0			
D8002	Memory capacity	Maximum value for model			0			
D8004	Error M number	M8060 to M8068			0			
D8006	Low battery voltage detection level	30 (0.1 V units)			0	0	0	
D8010	Scan present value	0.1 ms units *3	0					
D8011	Minimum scan time	0.1 ms units *3	0					
D8012	Maximum scan time	0.1 ms units *3	0					
D8013	Seconds	Operates as 1-second clock	—	_	—	Δ	\bigtriangleup	
D8014	Minutes	Time data	_	_	—		Δ	
D8015	Hours	Time data	_	_	—	Δ	Δ	
D8016	Day	Time data	_	_	_	Δ	\bigtriangleup	
D8017	Month	Time data	_	_	—	Δ	Δ	
D8018	Year	Time data	_	_	_	Δ	\triangle	
D8019	Day of week	Time data	—	_	—	Δ	Δ	
D8028	Z register contents	Z register contents	0					
D8029	V register contents	Z register contents	0					
D8030	Analog volume 1	*4	_	0	_	_	_	
D8031	Analog volume 2	*4		0				
D8039	Constant scan time	Initial value: 100 ms (1 ms units) *5	0					

O : This device or function is supported by the actual PLC.

-: This device or function is not supported by the actual PLC.

 \bigtriangleup : This device is supported by actual PLCs with a clock function.

For the ladder logic test tool (LLT), always ON regardless whether the actual PLC has a clock function.

*1 : Initial value: 200 ms for all models. Can be changed but no watchdog timer check is conducted.

*2 : FX0, FX0S	20000
FX0N	20000
FX1	21000

FX,FX2, FX2C.....20000

FX2N, FX2NC.....24000

*3: Values equal to all constant scan setting values. Default value is 100 ms.

*4 : Operates as a general data register. Test by writing values from 0 to 255 using the GPPW device test functions.

*5 : The set constant time becomes the time for one scan.

Appendix Table 1.13	List of Special Registers Supported
	by the Ladder Logic Test Tool (LLT) (cont.)

No.	Name	Description	FX ₀ , FX _{0S}	FX _{0N}	FX ₁	FX, FX ₂ , FX _{2C}	FX _{2N} , FX _{2NC}		
D8040	ON state number 1	STL monitor contents	0						
D8041	ON state number 2	STL monitor contents			0				
D8042	ON state number 3	STL monitor contents			0				
D8043	ON state number 4	STL monitor contents			0				
D8044	ON state number 5	STL monitor contents			0				
D8045	ON state number 6	STL monitor contents			0				
D8046	ON state number 7	STL monitor contents			0				
D8047	ON state number 8	STL monitor contents			0				
D8049	ON state minimum number	STL monitor contents			0				
D8067	Operation error code number	Error code number			0				
D8068	Operation error occurred step number latch	Saves step number where error occurred	0						
D8069	M8067 error occurred step number	Step number where error occurred	0						
D8102	Memory capacity	Maximum value for model					0		
D8164	Designate number of FROM/TO instruction transfer points	Write transfer points	_	_	_	_	0		
D8182	Z1 register contents	Z1 register contents					0		
D8183	V1 register contents	V1 register contents	_		—	—	0		
D8184	Z2 register contents	Z2 register contents		_			0		
D8185	V2 register contents	V2 register contents	_		—	—	0		
D8186	Z3 register contents	Z3 register contents	_		—	—	0		
D8187	V3 register contents	V3 register contents	_		—	—	0		
D8188	Z4 register contents	Z4 register contents	_		—	—	0		
D8189	V4 register contents	V4 register contents	_		—	—	0		
D8190	Z5 register contents	Z5 register contents		—			0		
D8191	V5 register contents	V5 register contents		—			0		
D8192	Z6 register contents	Z6 register contents					0		
D8193	V6 register contents	V6 register contents					0		
D8194	Z7 register contents	Z7 register contents		—			0		
D8195	V7 register contents	V7 register contents	—	—	—	_	0		

 $\ensuremath{\mathbb{O}}$: This device or function is supported by the actual PLC.

- : This device or function is not supported by the actual PLC.

 \bigtriangleup : This device is supported by actual PLCs with a clock function.

For the ladder logic test tool (LLT), always ON regardless whether the actual PLC has a clock function.

*1: Initialized to 200ms on all models. Rewritable but not WDT-checked.

*2:	FX0, FX0S	
	FX0N	
	FX1	21000
	FX2, FX2C	
	FX2N, FX2NC	

- *3: Same as all constant scan settings. Defaults to 100ms.
- *4: Operates as a general data register. Using the device test or similar function of GPPW or the like, write values of 0 to 255 to make a test.
- *5: The period of one scan is the time set as a constant scan.

Appendix 1.4 Ladder logic test tool (LLT) for Q series CPU (A mode) functions

(1) Device list

Since the devices of the Q series CPU (A mode) are the same as those of the A4UCPU, refer to A4U in the List of Devices Supported by the Ladder Logic Test Tool (LLT) in Appendix Table 1.1.

- (2) Special relay list Since the special relays of the Q series CPU (A mode) are the same as those of the A series CPU, refer to the List of Special Relays Supported by the Ladder Logic Test Tool (LLT) in Appendix Table 1.2.
- (3) Special register list Since the special registers of the Q series CPU (A mode) are the same as those of the A series CPU, refer to the List of Special Registers Supported by the Ladder Logic Test Tool (LLT) in Appendix Table 1.3.

Appendix 1.5 Ladder logic test tool (LLT) for Q series CPU (Q mode) functions

(1) Device list

Appendix Table 1.14 List of Devices Supported by the Ladder Logic Test Tool (LLT)

Device		Device Range (Points)	Setting Range	Remarks	
	Input	X0 to X1FFF (8192 Points)	Fixed	Actual inputs are disabled.	
	Output	Y0 to Y1FFF (8192 Points)	Fixed	Actual outputs are disabled.	
	Internal relay	M0 to M8191 (8192 Points)	Changeable	_	
io.	Latch relay	L0 to L8191 (8192 Points)	Changeable	_	
dev	Annunciator	F0 to F2047 (2048 Points)	Changeable	_	
Bịt	Edge relay	V0 to V2047 (2048 Points)	Changeable	—	
	Step relay	SO to S511/Block	Changeable	Incompatible with SFC.	
	Link special relay	SB0 to SB7FF (2048 Points)	Changeable	_	
	Link relay	B0 to B1FFF (8192 Points)	Changeable	—	
Word device	Timer	T0 to T2047 (2047 Points)	Changeable	No operation in real time. High-speed timer can be set in 0.1ms increments (in parameter). 1ms increments in conventional LLT.	
	Retentive timer	None (ST0 to-)	Changeable	No operation in real time. High-speed retentive timer can be set in 0.1ms increments (in parameter). 1ms increments in conventional LLT.	
	Counter	C0 to C1023 (1024 Points)	Changeable	_	
	Data register	D0 to D12287 (12288 Points)	Changeable	—	
	Link register	W0 to W1FFF (8192 Points)	Changeable	—	
	Link special register	SW0 to SW7FF (2048 Points)	Changeable	—	

Name		Device Range (Points)	Setting Range	Remarks
	Function input	FX0 to FXF (16 points)	Fixed	
ä	Function output	FY0 to FYF (16 points)	Fixed	
Ш	Special relay	SM0 to SM2047 (2048 points)	Fixed	Compatible with some functions.
ą	Function register	FD0 to FD4 (5 points)	Fixed	_
Wor	Special register	SD0 to SD2047 (2048 points)	Fixed	Compatible with some functions.
	Link input	Jn\X0 to Jn\X1FFF (8192 points)	Fixed	Incompatible with link functions.
ŝi	Link output	Jn\Y0 to Jn\Y1FFF (8192 points)	Fixed	Incompatible with link functions.
ш	Link relay	Jn\B0 to JnB\3FFF (16384 points)	Fixed	Incompatible with link functions.
	Link special relay	Jn\SB0 to Jn\SB1FF (512 points)	Fixed	Incompatible with link functions.
ord	Link register	Jn\W0 to Jn\W3FFF (16384 points)	Fixed	Incompatible with link functions.
Ň	Link special register	JnS\W0 to JnS\W1FF (512 points)	Fixed	Incompatible with link functions.
	Buffer register	Un\G0 to Un\G65535 (65536 points)	Fixed	16384 points in conventional LLT.
ord	Index register	Z0 to Z15 (16 points)	Fixed	
M	File register	R0 to R18383 (18384 points) ZR0 to ZR1042432 (1042433 points)	Fixed	_
	Nesting	N0 to N14 (15 points)	Fixed	
_	Pointer	P0 to P4095 (4096 points)	Fixed	
	Interrupt pointer	10 to 147 (48 points)	Fixed	Incompatible with interrupt functions.
	SFC block	BL0 to BL319 (320 points)	Fixed	Incompatible with SFC.
B	SFC transition device	TR0 to TR511 (512 points)	Fixed	Incompatible with SFC.
_	Network No.	J1 to J255 (256 points)	Fixed	Incompatible with link functions.
	I/O No.	U0 to UFF (256 points)	Fixed	Incompatible with link/special modules.
	Decimal constant	K2147483648 to K2147483647	Fixed	_
	Hexadecimal constant	H0 to HFFFFFFF	Fixed	—
	Real number constant	E±1.17549-38 to F±3.40282+38	Fixed	_
_	Character string constant	"ABC", "123"etc.	Fixed	Up to 16 characters per instruction

Appendix Table 1.14 List of Devices Supported by the Ladder Logic Test Tool (LLT) (cont.)

(2) Special Relay List

Appendix Table 1.15 List of Special Relays Supported by the Ladder Logic Test (LLT)

Device Name	Remarks	Device Name	Remarks	Device Name	Remarks	Device Name	Remarks
SM0	Diagnostic error	SM410 *1	0.1 sec. clock	SM620	Card B use flag normally ON	SM1022	User clock No. 2
SM1	Self-diagnostic error	SM411 *1	0.2 sec. clock	SM621	Card B protect flag normally OFF	SM1023	User clock No. 3
SM5	Error common information	SM412 *1	1 sec. clock	SM622	Drive 3 flag normally ON	SM1024	User clock No. 4
SM16	Error individual information	SM413 *1	2 sec. clock	SM623	Drive 4 flag normally ON	SM1030	0.1 sec. clock
SM50	Error reset	SM414 *1	2n sec. clock	SM640	File register use	SM1031	0.2 sec. clock
SM56	Operation error	SM415 *1	2n millsec. clock	SM700	Carry flag	SM1032	1 sec. clock
SM62	Annunciator detection	SM420	User clock No. 0	SM703	Sort order	SM1033	2 sec. clock
SM203	STOP contact	SM421	User clock No. 1	SM704	Block comparison	SM1034	2n sec. clock
SM205	STEP-RUN contact	SM422	User clock No. 2	SM715	EI flag	SM1036	Normally ON
SM213	Clock data read request	SM423	User clock No. 3	SM722	BIN/DBIN error processing switch-over	SM1037	Normally OFF
SM400	Normally ON	SM424	User clock No. 4	SM776	Local device enable/disable setting at CALL time OFF :Local device disable ON :Local device enable	SM1038	ON only 1 scan after RUN
SM401	Normally OFF	SM430	User clock No. 5	SM777	Local device enable/disable setting in cyclic execution program OFF :Local device disable ON :Local device enable	SM1039	OFF only 1 scan after RUN
SM402	ON only 1 scan after RUN	SM431	User clock No. 6	SM1008	Self-diagnostic error	SM1042	STOP contact
SM403	OFF only 1 scan after RUN	SM432	User clock No. 7	SM1009	Annunciator detection	SM1054	STEP-RUN contact
SM404	ON only 1 scan after RUN	SM433	User clock No. 8	SM1010	Operation error	_	_
SM405	OFF only 1 scan after RUN	SM434	User clock No. 9	SM1020	User clock No. 0		_
SM408 *1	0.01 sec. clock	SM510	Low-speed program execution	SM1021	User clock No. 1		_

*1 : Derived from the constant scan setting and scan count. The time set as a constant scan is the time of 1 scan. 1 scan time = constant scan time.

(3) Special Device List

Appendix Table 1.16 List of Special Devices Supported by the Ladder Logic Test (LLT)

Device Name	Remarks	Device Name	Remarks	Device Name	Remarks	Device Name	Remarks
SD0	Diagnostic error	SD64	Detection table	SD227	Display device data	SD527 *1	Max. scan time
SD1	Error occurrence time	SD65	Detection table	SD290	Device assignment	SD528 *1	Current scan time
SD2	Error occurrence time	SD66	Detection table	SD291	Device assignment	SD529 *1	Current scan time
SD3	Error occurrence time	SD67	Detection table	SD292	Device assignment	SD532 *1	Min. scan time
SD4	Error information segment	SD68	Detection table	SD293	Device assignment	SD533 *1	Min. scan time
SD5	Error common information	SD69	Detection table	SD294	Device assignment	SD534 *1	Max. scan time
SD6	Error common information	SD70	Detection table	SD295	Device assignment	SD535 *1	Max. scan time
SD7	Error common information	SD71	Detection table	SD296	Device assignment	SD647	File register capacity
SD8	Error common information	SD72	Detection table	SD297	Device assignment	SD648	R block No.
SD9	Error common information	SD73	Detection table	SD298	Device assignment	SD1008	Diagnostic error
SD10	Error common information	SD74	Detection table	SD299	Device assignment	SD1009	Annunciator detection
SD11	Error common information	SD75	Detection table	SD300	Device assignment	SD1015	CPU operation status
SD12	Error common information	SD76	Detection table	SD301	Device assignment	SD1017 *1	Min. scan time
SD13	Error common information	SD77	Detection table	SD302	Device assignment	SD1018 *1	Current scan time
SD14	Annunciator number	SD78	Detection table	SD303	Device assignment	SD1019 *1	Max. scan time
SD15	Error common information	SD79	Detection table	SD304	Device assignment	SD1021 *1	Current scan time
SD16	Error individual information	SD200	CPU switch status	SD412 *2	1 sec. counter	SD1022 *2	1 sec. counter
SD17	Error individual information	SD201	LED status	SD414 *2	2n sec. clock setting	SD1035	R block No.
SD18	Error individual information	SD203	CPU operation status	SD415 *2	2n millsec. clock setting	SD1124	Number of annunciators
SD19	Error individual information	SD210	Clock year, month	SD420	Scan counter	SD1125	Annunciator number
SD20	Error individual information	SD211	Clock day, hour	SD430	Low-speed scan counter	SD1126	Annunciator number
SD21	Error individual information	SD212	Clock minute, second	SD500	Execution program No.	SD1127	Annunciator number
SD22	Error individual information	SD213	Year, day of the week	SD510	Low-speed program No.	SD1128	Annunciator number
SD23	Error individual information	SD220	Display device data	SD520 *1	Current scan time	SD1129	Annunciator number
SD24	Error individual information	SD221	Display device data	SD521 *1	Current scan time	SD1130	Annunciator number

Appendix Table 1.16 List of Special Devices Supported by the Ladder Logic Test (LLT) (cont.)

Device Name	Remarks	Device Name	Remarks	Device Name	Remarks	Device Name	Remarks
SD25	Error individual information	SD222	Display device data	SD522 *1	Initial scan time	SD1131	Annunciator number
SD26	Error individual information	SD223	Display device data	SD523 *1	Initial scan time	SD1132	Annunciator number
SD60	Error reset	SD224	Display device data	SD524 *1	Min. scan time	_	_
SD62	Annunciator number	SD225	Display device data	SD525 *1	Min. scan time		_
SD63	Number of annunciators	SD226	Display device data	SD526 *1	Max. scan time	_	_

*1: Same as all constant scan settings. Default is 100msec.

*2: Derived from the constant scan setting and scan count. The time set as a constant scan is the time of 1 scan. 1 scan time = constant scan time.

Appendix 2 List of Supported Instruction

The ladder logic test tool (LLT) supports the A SeriesCPU/QnA Series CPU/Q Series CPU instructions.

However, some instructions are subject to restrictions and some are not supported. Unsupported instructions are not processed (NOP).

See Appendices Table 1.14 to 1.16 for the instructions supported by the ladder logic test tool (LLT).

POINT

Unsupported instructions are not processed (NOP), and the "Unsupported information indicator lamp" lights up on the initial window of the ladder logistic test tool (LLT) functions. (Refer to the display contents in Section 3.3 "Description of the Initial Window Display".

Appendix 2.1 A series CPU function ladder logic test tool (LLT)

Appendix Table 2.1 List of Supported Instructions (A Series CPU Function)

Class	Instruction Symbol	Restriction
Contact instructions	LD, LDI, AND, ANI, OR, ORI	—
Coupling instructions	ANB, ORB, MPS, MRD, MPP	
Output instructions	OUT, OUT T, OUT C, SET, RST, PLS, PLF	
Shift instruction	SFT(P)	_
Master control instructions	MC, MCR	—
End instructions	FEND, END	
Other instructions	STOP, NOP	_

(1) Sequence Instructions

(2) Basic Instructions

Class	Instruction Symbol	Restriction
Comparative operation instructions	=, <>, >, <=, <, >=, D=, D<>, D>, D<=, D<, D>=	_
Arithmetic operation instructions	+(P), -(P), D+(P), D-(P), *(P), /(P), D*(P), D/(P), B+(P), B-(P), DB+(P), DB-(P), B*(P), B/(P), DB*(P), DB/(P), INC(P), DEC(P), DINC(P), DDEC(P)	_
BCD ↔ BIN conversion instructions	BCD(P), DBCD(P), BIN(P), DBIN(P)	_
Data transfer instruction	MOV(P), DMOV(P), CML(P), DCML(P), BMOV(P), FMOV(P), XCH(P), DXCH(P)	_
Program branching instructions	CJ, SCJ, JMP, CALL(P), RET	_
Program switching instructions	СНБ	_

Appendix Table 2.1 List of Supported Instructions (A Series CPU Function) (cont.)

Class	Instruction Symbol	Restriction
Logical arithmetic instructions	_	
Rotation instructions	_	
Shift instruction	SFR(P), SFL(P), BSFR(P), BSFL(P), DSFR(P), DSFL(P),	_
Data processing instructions	a processing instructions SER(P), SUM(P), DSUM(P), DECO(P), ENCO(P), SEG, BSET(P), BRST(P), DIS(P), UNI(P), ASC	
FIFO instruction	FIFW(P), FIFR(P)	
Buffer memory access instructions	FROM(P), DFRO(P), TO(P), DTO(P)	_
FOR to NEXT instructions	FOR, NEXT	_
Display instructions	LED, LEDA, LEDB, LEDR	_
Other instructions	STC, CLC, DUTY	STC converted to SET M9012

(3) Applied Instructions

(4) Dedicated Instructions

Class	Instruction Symbol	Restriction
Direct output instruction	DOUT, DSET(P), DRST(P)	_
Structural program instructions	BREAK(P), FCALL(P)	_
Data operation instructions	DSER(P), SWAP(P), DIS(P), UNI(P), TEST(P), DTEST(P)	_
I/O operation instruction	FF	—
Real number processing instructions	BSQR(P), BDSQR(P), BSIN(P), BCOS(P), BTAN(P), BASIN(P), BACOS(P), BATAN(P), INT(P), DINT(P), FLOAT(P), DFLOAT(P), ADD(P), SUB(P), MUL(P), DIV(P), RAD(P), DEG(P), SIN(P), COS(P), TAN(P), ASIN(P), ACOS(P), ATAN(P), SQR(P), EXP(P), LOG(P)	_
Character string processing instructions	BINDA(P), DBINDA(P), BINHA(P), DBINHA(P), BCDDA(P), DBCDDA(P), DABIN(P), DDABIN(P), HABIN(P), DHABIN(P), DABCD(P), DDABCD(P), LEN(P), STR(P), DSTR(P), VAL(P), DVAL(P), ASC(P), HEX(P), SMOV(P), SADD(P), SCMP(P), WTOB(P), BTOW(P)	_
Data control instructions	LIMIT(P), DLIMIT(P), BAND(P), DBAND(P), ZONE(P), DZONE(P)	_
Clock instructions	DATERD(P)	_
Extension file register instructions	RSET(P), BMOVR(P), BXCHR(P), ZRRD(P), ZRWR(P), ZRRDB(P), ZRWRB(P)	_
Program switching instructions	ZCHG	_

Appendix 2.2 QnA series function ladder logic test tool (LLT)

Appendix Table 2.2 List of Supported Instructions (QnA Series CPU functions)

()	•	
Class	Instruction Symbol	Restriction
Contact instructions	LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF	_
Coupling instructions	ANB, ORB, MPS, MRD, MPP, INV, MEP, MEF, EGP, EGF	_
Output instructions	OUT, OUT T, OUT C, OUTH T, SET, RST, PLS, PLF, FF	_
Shift instructions	SFT(P)	—
Master control instructions	MC, MCR	—
End instructions	FEND, END	_
Other instructions	STOP, NOP, NOPLF, PAGE	_

(1) Sequence Instructions

(2) Basic Instructions

Class	Instruction Symbol	Restriction
Comparative operation instructions	=, <>, >, <=, <, >=, D=, D<>, D>, D<=, D<, D>=, E=, E<>, E>, E<=, E<, E>=, \$=, \$<>, \$>, \$<=, \$<, \$>=, BKCMP (P)	_
Arithmetic operation instructions	+(P), -(P), D+(P), D-(P), *(P), /(P), D*(P), D/(P), B+(P), B-(P), DB+(P), DB-(P), B*(P), B/(P), DB*(P), DB/(P), E+(P), E-(P), E*(P), E/(P), BK+(P), BK-(P), \$+(P), INC(P), DEC(P), DINC(P), DDEC(P)	_
Data conversion instructions	BCD(P), DBCD(P), BIN(P), DBIN(P), INT(P), DINT(P), FLT(P), DFLT(P), DBL(P), WORD(P), GRY(P), DGRY(P), GBIN(P), DGBIN(P), NEG(P), DNEG(P), ENEG(P), BKBCD(P), BKBIN(P)	_
Data transfer instructions	MOV(P), DMOV(P), EMOV(P), \$MOV(P), CML(P), DCML(P), BMOV(P), FMOV(P), XCH(P), DXCH(P), BXCH(P), SWAP(P)	_
Program branching instructions	CJ, SCJ, JMP, GOEND	_
Other convenient instructions	TTMR, STMR, RAMP, MTR	—

Appendix Table 2.2 List of Supported Instructions (QnA Series CPU functions) (cont.)

Class	Instruction Symbol	Restriction
Logical arithmetic instructions	WAND(P), DAND(P), BKAND(P), WOR(P), DOR(P), BKOR(P), WXOR(P), DXOR(P), BKXOR(P), WXNR(P), DXNR(P), BKNXR(P)	_
Rotation instructions	ROR(P), RCR(P), ROL(P), RCL(P), DROR(P), DRCR(P), DROL(P), DRCL(P)	_
Shift instructions	SFR(P), SFL(P), BSFR(P), BSFL(P), DSFR(P), DSFL(P),	_
Bit processing instructions	BSET(P), BRST(P), TEST(P), DTEST(P), BKRST(P)	_
Data processing instructions	SER(P), DSER(P), SUM(P), DSUM(P), DECO(P), ENCO(P), SEG(P), DIS(P), UNI(P), NDIS(P), NUNI(P), WTOB(P) BTOW(P), MAX(P), MIN(P), DMAX(P), DMIN(P), SORT(P), DSORT(P), WSUM(P), DWSUM(P)	SORT(P), DSORT(P) are executed one scan.
Structural instructions	FOR, NEXT, BREAK(P), CALL(P), RET, FCALL(P), ECALL(P), EFCALL(P)	_
Data table operation instruction	FIFW(P), FIFR(P), FPOP(P), FINS(P), FDEL(P)	_
Buffer memory access instructions	FROM(P), DFRO(P), TO(P), DTO(P)	_
Character string processing instructions	BINDA(P), DBINDA(P), BINHA(P), DBINHA(P), BCDDA(P), DBCDDA(P), DABIN(P), DDABIN(P), HABIN(P), DHABIN(P), DABCD(P), DDABCD(P) LEN(P), STR(P), DSTR(P), VAL(P), DVAL(P), ESTR(P), EVAL(P), ASC(P), HEX(P), RIGHT(P), LEFT(P), MIDR(P), MIDW(P), INSTR(P), EMOD(P), EREXP(P)	
Special function instructions	SIN(P), COS(P), TAN(P), ASIN(P), ACOS(P), ATAN(P), RAD(P), DEG(P), SQR(P), EXP(P), LOG(P), BSQR(P), BDSQR(P), BSIN(P), BCOS(P), BTAN(P), BASIN(P), BACOS(P), BATAN(P)	_
Data control instructions	LIMIT(P), DLIMIT(P), BAND(P), DBAND(P), ZONE(P), DZONE(P), RSET(P), QDRSET(P)	_
Clock instructions	DATERD(P), DATE+(P), DATE-(P), SECOND(P), HOUR(P)	DATERD(P) reads the computer clock data.
Program control instructions	PSTOP(P), POFF(P), PSCAN(P), PLOW(P)	_
Display instructions	LED, LEDR	-
Other instructions	DUTY, ZRRDB(P), ZRWRB(P), ADRSET(P)	_

(3) Applied Instructions

Appendix 2.3 FX series function ladder logic test tool (LLT)

Appendix Table 2.3 List of Supported Instructions (FX Series CPU functions)

(1) Sequence Instructions

Class	Instruction Symbol	Restriction
Contact instructions	LD, LDI, LDP, LDF, AND, ANI, ANDP, ANDF, OR, ORI, ORP, ORF	*1
Coupling instructions	ANB, ORB, MPS, MRD, MPP, INV	*1
Output instructions	OUT, SET, RST, PLS, PLF	_
Master control instructions	MC, MCR	—
Step ladder instructions	STL, RET	_
Other instructions	END, NOP	_

*1: The LDP, LDF, ANDP, ANDF, ORP, ORF, and INV instructions are only compatible with FX_{2N} and FX_{2NC} PLC.

		la starra		Applicat	le PLCs					
Class	FNC No.	tion Symbol	32-bit Instruction	Execution	FXo, FXos	FXon	FX1	FX, FX2, FX2c	FX2N, FX2NC	Ladder logic test tool (LLT)
	00	CJ	_	Δ	0	0	0	0	0	•
	01	CALL	—	YES	—	_	0	0	0	•
ť	02	SRET	—	_	—	_	0	0	0	
/cha	03	IRET	—	—	0	0	0	0	0	×
flow	04	EI	—	—	0	0	0	0	0	×
am	05	DI	—	_	0	0	0	0	0	×
rogr	06	FEND	—	_	0	0	0	0	0	•
٩	07	WDT	—		0	0	0	0	0	×
	08	FOR	_	_	0	0	0	0	0	•
	09	NEXT	—	—	0	0	0	0	0	•
	10	CMP	YES	Δ	0	0	0	0	0	•
	11	ZCP	YES	Δ	0	0	0	0	0	•
	12	MOV	YES	\triangle	0	0	0	0	0	•
	13	SMOV	—	YES	—	_	—	0	0	•
	14	CML	YES	YES	—	_	—	0	0	\bullet
	15	BMOV	—	\triangle	—	0	—	0	0	•
	16	FMOV	YES	YES	—	_	—	0	0	•
	17	ХСН	YES	YES		_		0	0	•
	18	BCD	YES			0	0	0		•
	19	BIN	YES		0	0	0	0	0	•

(2) Applied Instructions

				D	Applicat	le PLCs				
Class	FNC No.	Instruc- tion symbol	32-bit Instruction	Pulses Execution Instruction	FXo, FXos	FXon	FX1	FX, FX2, FX2c	FX2n, FX2nc	Compatibility with Ladder logic test tool (LLT)
	20	ADD	YES	Δ	0	0	0	0	0	•
suc	21	SUB	YES	Δ	0	0	0	0	0	•
ratic	22	MUL	YES	Δ	0	0	0	0	0	•
ope	23	DIV	YES	Δ	0	0	0	0	0	•
cal	24	INC	YES		0	0	0	0	0	•
logi	25	DEC	YES		0	0	0	0	0	•
etic/	26	WAND	YES	Δ	0	0	0	0	0	•
hme	27	WOR	YES		0	0	0	0	0	•
Arit	28	WXOR	YES	Δ	0	0	0	0	0	•
	29	NEG	YES	YES	_	_	_	0	0	
	30	ROR	YES	YES	_	_	_	0	0	•
	31	ROL	YES	YES	_	_	_	0	0	•
	32	RCR	YES	YES	_	_	_	0	0	
ìift	33	RCL	YES	YES	_	_	_	0	0	•
h sh	34	SFTR			0	0	0	0	0	
atio	35	SFTL	_	Δ	0	0	0	0	0	•
Rot	36	WSFR	_	YES	_	_	_	0	0	●
	37	WSFL	_	YES	_	_	_	0	0	•
	38	SFWR	_	YES	_	_	_	0	0	•
	39	SFRD		YES	_		_	0	0	•
	40	ZRST	_	Δ	0	0	0	0	0	•
	41	DECO		 	0	0	0	0	0	•
	42	ENCO			0	0	0	0	0	•
sing	43	SUM	YES	YES	_	_	_	0	0	•
ces	44	BON	YES	YES				0	0	•
pro	45	MEAN	YES	YES	_		_	0	0	•
ata	46	ANS						0	0	•
	47	ANR	_	YES	_	_	_	0	0	•
	48	SOR	YES	YES	_	_	_	0	0	•
	49	FLT	YES	YES	_	_	_	0	0	•
	50	RFF	_		0	0	0	0	0	×
	51	REFE		YES	_	_	0	0	0	×
ing	52	MTR			_	_	_	0	0	×
ssa	53	HSCS	YES	_	0	0	0	0	0	×
oroc	54	HSCR	YES	_	$\overline{0}$	$\tilde{0}$	$\tilde{\alpha}$	n n	$\overline{0}$	×
ed p	55	HS7	YES			_		0	0	×
spe	56	SPD		_				0	$\overline{0}$	×
igh-	57		VEQ	_		0				×
Ī	50			_	$\overline{)}$	$\overline{}$		$\overline{)}$	$\overline{)}$	×
	59	PLSR	YES	_	_		_	_	Ŏ	×

Appendix Table 2.3 List of Supported Instructions (FX Series CPU functions) (cont.)

		l		Dulasa	Applicat	le PLCs				
Class	FNC No.	Instruc- tion symbol	32-bit Instruction	Pulses Execution Instruction	FXo, FXos	FXon	FX1	FX, FX2, FX2c	FX2N, FX2NC	Compatibility with Ladder logic test tool (LLT)
	60	IST	I	_	0	0	0	0	0	•
	61	SER	YES	YES	_	_	_	0	0	•
ions	62	ABSD	YES	_	_	_	_	0	0	•
ruct	63	INCD		_	_	_	_	0	0	•
inst	64	TTMR	l	-	_	_	_	0	0	•
ient	65	STMR	l	-	_	_	_	0	0	•
ven	66	ALT	l		0	0		0	0	•
Con	67	RAMP	-	—	0	0	—	0	0	•
Ŭ	68	ROTC	l	-	_	_	_	0	0	×
	69	SORT	l		_	_		0	0	•
	70	TKY	YES	—	—	—	—	0	0	×
	71	HKY	YES	-	_	_	_	0	0	×
0/	72	DSW	l		_	_		0	0	×
es,	73	SEGD	_	YES	—	—	—	0	0	×
evic	74	SEGL	l	-	_	_	_	0	0	×
al d	75	ARWS	_	_	—	_	—	0	0	×
tern	76	ASC		_	_	_	_	0	0	•
щ×	77	PR	_	_	—	—	—	0	0	×
	78	FROM	YES	YES	_	0	_	0	0	•
	79	то	YES	YES	—	0	—	0	0	•
	80	RS	-	—	—	0	—	0	0	×
	81	PRUN	YES	YES	_	_	_	0	0	×
SER	82	ASCI	_	YES	_	0	_	0	0	●
es, 6	83	HEX	_	YES	_	0	_	0	0	●
vice	84	CCD	_	YES	_	0	_	0	0	×
al de	85	VRRD	_	YES	_	—	0	0	0	×
eme	86	VRSC		YES	_	_	_	0	0	×
ЕXţ	87	_								—
	88	PID	_	_		_	_	0	0	×
	89	_								—
	90	MNET		YES	_	_	_	_	_	×
	91	ANRD	_	YES		_	_	_	_	×
F2	92	ANWR	_	YES	_	—	_	—	—	×
es,	93	RMST						0		×
evic	94	RMWR	YES	YES				0		×
ald	95	RMRD	YES	YES						×
tern	96	RMMN	_	YES				0		×
ы́	97	BLK		YES						×
	98	MCDE	_	YES						×
	99	_								_

Appendix Table 2.3 List of Supported Instructions (FX Series CPU functions) (cont.)

					Applicat	le PLCs				
Class	FNC No.	Instruc- tion symbol	32-bit Instruction	Pulses Execution Instruction	FX₀, FX₀s	FXon	FX1	FX, FX2, FX2C	FX2N, FX2NC	Compatibility with Ladder logic test tool (LLT)
	110	ECMP	YES	YES	_	_	_	_	0	•
	111	EZCP	YES	YES	_	_	_	—	0	•
	118	EBCD	YES	YES	_	_	_	_	0	•
	119	EBIN	YES	YES	_	_	_	_	0	•
oint	120	EADD	YES	YES	_	_	_	_	0	•
al-po	121	ESUB	YES	YES	_			_	0	•
cim	122	EMUL	YES	YES	_	_	_	_	0	•
g de	123	EDIV	YES	YES	_	_	_	_	0	•
ating	127	ESQR	YES	YES	_			_	0	•
Flo	129	INT	YES	YES	_	_	_	_	0	•
	130	SIN	YES	YES	_	_	_	_	0	•
	131	COS	YES	YES	_			_	0	•
	132	TAN	YES	YES	_	_	_	_	0	•
	147	SWAP	YES	YES	_	_	_	_	0	•
<i>(</i> 0	160	TCMP	_	YES	_	_	_	_	0	•
ions	161	TZCP	_	YES	_	_	_	_	0	•
erat	162	TADD	_	YES	_	_	_	_	0	
do >	163	TSUB	_	YES	_	_	_	_	0	●
loct	166	TRD	_	YES	_	_	_	_	0	•
0	167	TWR	_	YES	_	_	_	_	0	×
ay	170	GRY	YES	YES	_	_	_	_	0	
Ģ	171	GBIN	YES	YES	_	_	_	_	0	•
	224	LD=	YES	_	_	_	_	_	0	
	225	LD>	YES	_	_	_	_	_	0	•
	226	LD<	YES	_	_	_	_	_	0	•
	228	LD<>	YES	_	_	_	_	_	0	
	229	LD≤	YES	_	_	_	_	_	0	
	230	LD≥	YES	_	_	_	_	_	0	•
uo	232	AND=	YES	-	_	_	_	_	0	•
ariso	233	AND>	YES	_	_	_	_	_	0	
ä	234	AND<	YES		_	_	_	_	0	
t cc	236	AND<>	YES	_	_	_	_	_	0	●
ntac	237	AND≤	YES	_	_	_	_	_	0	●
ပိ	238	AND≥	YES	_	_	_	_	_	0	●
	240	OR=	YES		_		_		0	•
	241	OR>	YES		_		_		0	•
	242	OR<	YES		_	_	_		0	•
	244	OR<>	YES	_	_	_	_	_	0	•
	245	OR≤	YES	_	_	_	_	_	0	•
	246	OR≥	YES	_	_	_	_	_	0	•

Appendix Table 2.3 List of Supported Instructions (FX Series CPU functions) (cont.)

- : Supported by ladder logic test tool (LLT).
- \times : Not supported by ladder logic test tool (LLT).
- \bigcirc : Instruction supported by the actual PLC.
- \bigtriangleup : FX0, FX0S, and FX0N actual PLCs do not support pulse-executed instructions.
- : Instruction not supported by the actual PLC.

Appendix 2.4 Ladder logic test tool (LLT) for Q series CPU (A mode) functions

Since the supported instructions of the Q series CPU (A mode) are the same as those of the A series CPU, refer to Appendix Table 2.1 "List of Supported Instructions (A Series CPU Function)".

Appendix 2.5 Ladder logic test tool (LLT) for Q series CPU (Q mode) functions

Appendix Table 2.4 List of Supported Instructions (Q Series CPU (Q Mode) Function)

Class	Instruction Symbol	Restriction
Contact instructions	LD, LDI, AND, ANI, OP, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF	_
Coupling instructions	ANB, ORB, MPS, MRD, MPP, INV, MEP, MEF, EGP, EGF	_
Output instructions	OUT, OUT T, OUT C, OUTH T, SET, RST, PLS, PLF, FF	_
Shift instruction	SFT(P)	_
Master control instructions	MC, MCR	—
End instructions	FEND, END	—
Other instructions	STOP, NOP, NOPLF, PAGE	—

(1) Sequence Instructions

(Z) Basic Instructions	(2)	Basic	Instructions
------------------------	-----	-------	--------------

Class	Instruction Symbol	Restriction
Comparative operation instructions	=, <>, >, <=, <, >=, D=, D<>, D>, D<=, D<, D>=, E=, E<>, E>, E<=, E<, E>=, \$=, \$<>, \$>, \$<=, \$<, \$>=, BKCMP[(P)	_
Arithmetic operation instructions	+(P), -(P), D+(P), D-(P), *(P), /(P), D *(P), D/(P), B+(P), B-(P), DB+(P), DB-(P), B *(P), B/(P), DB *(P), DB/(P), E+(P), E-(P), E *(P), E/(P), BK+(P), BK-(P), \$+(P), INC(P), DEC(P), DINC(P), DDEC(P)	_
Data conversion instructions	BCD(P), DBCD(P), BIN(P), DBIN(P) INT(P), DINT(P), FLT(P), DFLT(P), DBL(P), WORD(P), GRY(P), DGRY(P), GBIN(P), DGBIN(P), NEG(P), DNEG(P), ENEG(P), BKBCD(P), BKBIN(P)	_
Data transfer instructions	MOV(P), DMOV(P), EMOV(P), \$MOV(P), CML(P), DCML(P), BMOV(P), FMOV(P), XCH(P), DXCH(P), BXCH(P), SWAP(P), RBMOV	RBMOV operates as BMOV instruction.
Program branch instructions	CJ, SCJ, JMP, GOEND	
Other convenient instructions	TTMR, STMR, RAMP, MTR	_

Appendix Table 2.4 List of Supported Instructions (Q Series CPU (Q Mode) Function) (cont.)

Class	Instruction Symbol	Restriction
Logical arithmetic instructions	WAND(P), DAND(P), BKAND(P), WOR(P), DOR(P), BKOR(P), WXOR(P), DXOR(P), BKXOR(P), WXNR(P), DXNR(P), BKNXR(P)	_
Rotation instructions	ROR(P), RCR(P), ROL(P), RCL(P), DROR(P), DRCR(P), DROL(P), DRCL(P)	_
Shift instructions	SFR(P), SFL(P), BSFR(P), BSFL(P), DSFR(P), DSFL(P)	—
Bit processing instructions	BSET(P), BRST(P), TEST(P), DTEST(P), BKRST(P),	—
Data processing instructions	SER(P), DSER(P), SUM(P), DSUM(P), DECO(P), ENCO(P), SEG(P), DIS(P), UNI(P), NDIS(P), NUNI(P), WTOB(P), BTOW(P), MAX(P), MIN(P), DMAX(P), DMIN(P), SORT(P), DSORT(P), WSUM(P), DWSUM(P)	SORT(P) and DSORT(P) are executed in 1 scan.
Structured instructions	FOR, NEXT, BREAK(P), CALL(P), RET, FCALL(P), ECALL(P), EFCALL(P)	_
Data table operation instructions	FIFW(P), FIFR(P), FPOP(P), FINS(P), FDEL(P)	—
Buffer memory access instructions	FROM(P), DFRO(P), TO(P), DTO(P)	_
Character string processing instructions	BINDA(P), DBINDA(P), BINHA(P), DBINHA(P), BCDDA(P), DBCDDA(P), DABIN(P), DDABIN(P), HABIN(P), DHABIN(P), DABCD(P), DDABCD(P), LEN(P), STR(P), DSTR(P), VAL(P), DVAL(P), ESTR(P), EVAL(P), ASC(P), HEX(P), RIGHT(P), LEFT(P), MIDR(P), MIDW(P), INSTR(P), EMOD(P), EREXP(P)	_
Special function instructions	SIN(P), COS(P), TAN(P), ASIN(P), ACOS(P), ATAN(P), RAD(P), DEG(P), SQR(P), EXP(P), LOG(P), BSQR(P), BDSQR(P), BSIN(P), BCOS(P), BTAN(P), BASIN(P), BACOS(P), BATAN(P)	_
Data control instructions	LIMIT(P), DLIMIT(P), BAND(P), DBAND(P), ZONE(P), DZONE(P), RSET(P), QDRSET(P)	_
Clock instructions	DATERD(P), DATA+(P), DATA-(P), SECOND(P), HOUR(P)	DATERD(P) reads clock data of personal computer.
Program control instructions	PSTOP(P), POFF(P), PSCAN(P), PLOW(P)	_
Display instructions	LED, LEDR	
Other instructions	DUTY, ZRRDB(P), ZRWRB(P), ADRSET(P)	-

(1) Applied Instructions

Appendix 3 List of Devices Usable with the I/O System Settings

Some devices designated in the condition setting area and simulation device area by the I/O system settings are subject to restrictions.

A list of the devices which can be used with the I/O system settings is shown below.

Device Name		Function			
		A Series CPU	QnA Series CPU	FX Series CPU	
	Input (X)		0	0	0
	Output (Y)		0	0	0
	Internal relay (M)			0	0
	Latch relay (L)		0	0	—
	Step relay (S)			_	—
	Step relay (S) (for	SFC)	_	×	—
	State (S)		_	—	0
	Annunciator (F)		0	0	_
	Edge relay (V)		_	0	—
	Link special relay	(SB)	_	0	_
	Link relay (B)		0	0	_
	Special relay	(M)	0	_	0
ice	Special relay	(SM)	_	0	—
dev	Time on (T)	Contacts	O *1	O *1	O *1
Bit	iter (1)	Coil	×	×	×
	Retentive timer	Contacts	_	O *1	O *1*2
	(ST)	Coil	_	×	×
	Counter (C)	Contacts	O *1	O *1	O *1
	Counter (C)	Coil	×	×	×
	Function input (F)	()	_	0	_
	Function output (F	FY)	_	0	_
	Link input (Jn\X)			×	_
	Link output (Jn\Y)		_	×	_
	Link relay (Jn\B)			×	_
	Link special relay (Jn\SB)		_	×	_
	SFC block (BL)			×	_
	SFC transition device(TR)			×	_
Ð	Data register (D)		0	0	0
∋vic	Special register	(D)	0		0
p_q		(SD)	_	0	
Mor	Link register (W)		0	0	_
	Link special register (SW)		—	0	—

(1) Condition Area

O.....Can be used

 \timesCannot be used

-....Not supported

*1 : Only T, ST, and C contacts can be designated.

*2 : In the FX Series, the device name becomes "T".

Device Name		Function			
		A Series CPU	QnA Series CPU	FX Series CPU	
	Timer (present va	lue) (T)	×	×	×
	Retentive timer (present value) (ST)		_	×	—
	Counter (present value) (C)		×	×	×
Function register (FD)		_	×	_	
e	왕 File register (R or D)		0	×	0
devi	Extension file	(ER)	×	—	—
P register	(ZR)	_	0	—	
Ň	ĕ Buffer register (Un∖G)		_	×	—
Link register (Jn\W)		_	×	—	
Link direct device (Jn\SW)		_	×	—	
Index register	(Z)	0	0	0	
	index register	(V)	0		0
Accumulator (A)		0			

O.....Can be used

imes.....Cannot be used

-....Not supported

*1: Only contacts may be specified for the T, ST and C.

*2: For the FX series, the device name is T.

(2) Simulation Device Area

Device Name		Function			
		A Series CPU	QnA Series CPU	FX Series CPU	
	Input (X)		0	0	0
	Output (Y)		0	0	0
	Internal relay (M)			0	0
	Latch relay (L)		0	0	_
	Step relay (S)			_	_
	Step relay (S) (for	SFC)	_	×	_
	State (S)		_	_	0
	Annunciator (F)		0	0	_
	Edge relay (V)		_	0	_
	Link special relay (SB)		_	0	_
	Link relay (B)		0	0	_
	Special relay	(M)	0	_	0
vice	Special relay	(SM)	—	0	_
dev	Timor (T)	Contacts	×	×	×
Bit		Coil	×	×	×
	Retentive timer	Contacts	_	×	×
	(ST)	Coil	—	×	×
	Counter (C)	Contacts	×	×	×
		Coil	×	×	×
	Function input (FX)		—	0	—
	Function output (FY)		—	0	—
	Link input (Jn\X)		_	×	_
	Link output (Jn\Y)		_	×	_
	Link relay (Jn\B)		_	×	_
	Link special relay (Jn\SB)			×	_
	SFC block (BL)		_	×	_
	SFC transition de	vice(TR)		×	_

O.....Can be used

imes.....Cannot be used

-....Not supported

MEMO

INDEX

[A]

A Series CPU

......2-10, 7- 5, Appendix- 1, Appendix-28

[B]

Buffer memory	
Saving the buffer memory	. 6- 1
Reading buffer memory	. 6- 3

[C]

CPU type	2-7
Cyclic execution program	2-20

[D]

Device
Device ListAppendix- 1, Appendix- 4
Saving the device memory 6-1
Reading device memory6-3
Running the device test5-12
Device Monitor Format5-9
Device Memory Monitor5- 1, 5- 2
Special Function Module7-5
Supported Device 2- 6, Appendix- 1
Displaying the Timing chart for Device 5-2

[E]

Error advance display button	3- 5
Execution of low-speed programs2-13	3, 2-19

[F]

FX Series	CPU	functions	 2-6	s, 2∙	-15
FX Series	CPU	functions	 2-6	ò, 2∙	-15

[G]

GPPW	
Functions executed from the	
GPPW menu	2- 1. 5- 1

[I]

Initial Window	3- 5
Instruction ListAppendix	(-28
Intelligent function module	
Utility	7- 8
I/O System Setting Functions	
Checking Current I/O System Setting	
Status	4- 6

Stopping Current I/O System Setting 4-7 Saving I/O System Settings File 4-8 Reading the I/O System Setting File...... 4-10

[L]

Execution of low-speed	l programs 2-13, 2-1	9
------------------------	----------------------	---

[M]

Monitor	
Monitor Communications Interval	5-6
Monitor Test Functions	5- 1
Stopping and Restarting the Monitor	5-5
Motion controller CPU 2- 1, 2- 6, 2- 9, 2	2-17

[Q]

QnA Series CPU functions	2-12, Appendix- 4
Q Series CPU functions	

[R]

Running the Device	Test 5- 12	2
--------------------	------------	---

[S]

Simulation	4-	2
Start	3-	5
Switch Display and Settings	3-	5

[T]

The ladder logic test tool (LLT)
The ladder logic test tool (LLT) are started
Functions executed from the logic test
functions (LLT) menu 2- 1, 5- 1
Ending the ladder logic test tool (LLT) 3-11
The tool function 6-1
Timing Chart

[U]

Unsupported information indicator lamp 3-5

MEMO

Ladder Logic Test Function software for Windows SW4D5C-LLT-E(V) Operating Manual