MITSUBISHI ELECTRIC

MITSUBISHI AUTOMATIC POWER FACTOR CONTROLLER

Types
 VAR-6A VAR-12A

User's Manual

- Before operating the device, please read thoroughly this User's Manual for safe operation and optimized performance of the device.

Check on your delivery

Besides the main unit, the following accessories are packaged.

Parts name	Quantity	Specifications
User's Manual (this document)	1	2

Contents

Check on your delivery 2
Contents 3
Safety Precautions 4
Operation

1. Features 9
2. Functions in each mode 9
3. Names and Function of Each Part 10
4. Explanation of Control and Movement 14
4.1 Details of Display of Power Factor Status and Auto/Manual Control Changeover 14
4.2 Status of Power Factor 14
4.3 Auto/Manual Control Changeover 15
4.4 Features of each Control 16
4.5 Cyclic Control Operation 16
4.6 Priority Control Operation 17
4.7 Optimal Control Operation 18
4.8 Capacitor Changing Control at Optimal Control Operation 19
4.9 Light Load Disconnection Operation 20
4.10 Forced Disconnection Operation 21
5. Set-up
5.1 Flow of Set-up (Measure Set-up Mode) 22
5.2 Flow of Set-up (Control Set-up Mode) 24
5.3 Measure Set-up Menu 1
(Set-up of Phase/Wire Type • Using VT/direct input • Primary Voltage • Primary Current) 26
5.4 Measure Set-up Menu 2 (Set-up of Combination) 29
5.5 Control Set-up Menu 1 (Set-up of Target Power Factor) 30
5.6 Control Set-up Menu 2 (Set-up of Light Load Power Ratio) 31
5.7 Control Set-up Menu 3 (Set-up of Delay Time) 33
5.8 Control Set-up Menu 4 (Set-up of Control Method) 34
5.9 Control Set-up Menu 5 (Set-up of Capacity) 35
5.10 TEST Menu (Operation Tests for the Connecting/Disconnecting) 36
5.11 Set-up of Auto/Manual Control 37
5.12 Priority Order of Control 37
6. Operation
6.1 Changing of the Display 38
6.2 Changing of the Phase 38
6.3 Display of Capacity 39
6.4 Reset of Capacity 39
7. Others
7.1 Operation 40
7.2 Troubleshooting 41
-After-sale service
Installation
8. Dimensions 42
9. Attachment 43
10. Wiring 44
11. Wiring Diagram 46
Specifications
Specifications 49
Set-up Table 50

Use the device correctly after reading the following explanation before use.
Be sure to follow instructions in order to use the device safely.
Keep the User's Manual at a place that can be read at any time.
Be sure to deliver the accessories and User's Manual to the end user.

Caution	
	The marks used respectively mean the following.
\. W ARNING	Wrong handling can cause dangerous situation which results fatal accidents or serious injuries.
\} CAUTION	Wrong handling can cause dangerous situation which results in significant or minor injuries or impersonal damages.

Working Environment and Working Condition

Avoid using this device in the following places. Use in the following places will negatively affect the device lifetime and operations.
Do not;

- Place where the ambient temperature exceeds the temperature range $\left(-5^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$.
- Place where the daily average temperature exceeds $35^{\circ} \mathrm{C}$.
- Place where the ambient humidity exceeds the humidity range (30% to 85%).
- Place with a lot of dust, corrosive gas, salt or oily smoke.
- Place with a lot of vibrations or impacts.
- Place where the device may be exposed to rain or drops of water.
- Place exposed to the sun.
- Place where metal pieces and inductive substances are laying around.
- Place with strong electromagnetic field or much outside noise.
- Place higher than 1000 m above sea level.

Cautionary Instructions for Installation and Connection

Read this User's Manual before using.

	To secure safety, the connecting work should be done by a person qualified in performing electric wiring work. Do not perform hot line work. It can cause electrification, device failure or fire. At the time of tightening screws and wiring, be careful about the invasions of parings or the electric wire into the device. Perform connection after you fully check with the connection diagram. Inappropriate connection can cause electrification, device failure or fire. Use electric wires which can comply with the rated current. Using inappropriate wire can cause fire due to heat generation. At the time of the resisting pressure examination of the high voltage apparatus, carry out grounding to avoid any negative influence. The device can break down if more than 2000 V is impressed for 1 minute.

Cautionary Instructions before Use

- Follow the environment and an operating condition in setting place.
- Make settings before use of this device. Read the User's Manual in order to set it correctly. Inappropriate settings can cause incorrect operation.
- After checking the power supply rating of this device, impress appropriate voltage. (Refer to page 49)

Cautionary Instructions for Using

- We cannot take responsibility for the loss, lost profits, and the damage caused in special circumstances. Moreover, we will not take responsibility to the second damage, accident compensation, and the damage to any places other than our product.
- When blackout occurs during setting, it will not be set correctly. After the return of electricity, set it again.
- Since this device is not equipped with protective functions against overcurrent, overvoltage, ground faults, temperature, or pressure on capacitor, protected circuits must be prepared separately.

I>	Overcurrent Relay	* Type Designations of devices by the Present Maker	The capacitor is protected by tripping circuit breaker for 52C
$\underline{\mathrm{I}} \stackrel{\square}{ } \boldsymbol{\prime}$	Ground Relay	VMC...VZ-D TYPE	
U>	Overvoltage Relay	SC. $\cdots \cdot \cdot \mathrm{KL}$-8 TYPE	contactor for 52C1~52C4 with
63C	Capacitor Pressure Switch	(c	each protection relays and
SR	Series Reactor	SR…..KR-3 TYPE (series reactor)	disconnecting the capacitor from
DR	Discharging Resistor High Voltage Power Capac		the circuit.

Install series reactor to the capacitor, which is to be automatically controlled by this device.
This device has a constant excitation system that outputs no voltage 1a contact that continuously keeps on when capacitor control signal is closed, while the contact becomes off when capacitor control signal is opened for each bank. One side of the output signal of from C 1 to C 6 is COM1 and the other side of the output signal of from C 7 to C 12 is COM 2 . When connecting with the vacuum electromagnetic contactor for disconnection and connection of capacitor, be sure to use auxiliary relay.

- Circuits set as "Manual ON" or "Manual OFF" will not connect/disconnect capacitor.
When electric discharge coil is instituted, set Delay Time for 5 minutes.
- Set up the applicable delay time to the discharge device of the capacitor (Discharge resistance: over 5 minutes, Discharge coil: over 1 minute), when the connection/disconnection test with the high voltage circuit is carried out. Carry out the test with the delay time set to be shorter than it should can cause capacitor failure accidents.

\triangle CAUTION

- Do not dismantle or remodel this device.

It can cause malfunction, electrification or fire.

Safety Precautions

Cautionary Instructions for Maintenance and Inspection

- Wipe off surface with a soft cloth.
- Do not allow chemical cloth to contact for a long time or wipe with benzene, thinner or alcohol.
- For correct use of the device, perform the following inspection.

Enforce (4) as a periodic inspection (every half year to 1 year), and (1) to (3) as an everyday inspection. Check to see:
(1) Any damage in the device?
(2) Any Error in the LCD?
(3) Any unusual sound or smell or fever?
(4) Any looseness in the installation or terminal block connection?
(Be sure to perform the inspection with the power off.)

Storage Precautions

When storing the device, turn off auxiliary power and the power supply of input circuit, remove wiring, and store it in a plastic bag etc. (Please take care of the removed wirings to prevent any accidents.)
Do not store the device for long time in places mentioned below. There is a risk of failure or deterioration in service life.
Do not;

- Place where the ambient temperature exceeds the temperature range $\left(-20^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$.
- Place where the daily average temperature exceeds $35^{\circ} \mathrm{C}$.
- Place where the ambient humidity exceeds the humidity range (30% to 85%).
- Place with a lot of dust, corrosive gas, salt or oily smoke.
- Place with a lot of vibrations or impacts.
- Place where the device may be exposed to rain or drops of water.
- Place exposed to the sun.
- Place where metal pieces and inductive substances are laying around.

Disposal

- Dispose of this device according to "The law about abandonment and cleaning".
- Batteries are not used in this device.

■About the Packing material and the User's Manual

For environmental load reduction,

- Corrugated paper is used on packing material.
- Regenerated paper is used on User's Manual.

Term of Guarantee

The period of guarantee is for one year from the purchase date.
Repair is onerous in case you break the device intentionally or by mistake even if it is during the guaranteed period.

Exchange Cycle

Exchange cycle will depend on status of use, however update should be carried out in every 10 years.

Operation

1. Features

This device controls input of capacitor automatically with primary voltage and measured primary current.

List of Types

Type	Output Function	Input Function
	Capacitor Control Signal	Forced Disconnection Signal
VAR-6A	6 circuits	1 circuit
VAR-12A	12 circuits	1 circuit

2. Functions in each mode

There are following modes in this device.

Operation Mode

Measurement value is indicated with digital number.
The measurement values and capacity (of capacitors) are displayed on this Mode.

Measure Set-up Mode

Set-up of phase/wire type, primary voltage, and primary current are possible.
Set necessary items for operation.
In addition, it can carry out operation tests for connecting/disconnecting.
Control Set-up Mode
Set-up of target power factor, control method, and capacity are possible.
Set necessary items for operation.

Flow of each mode

TEST Menu

3. Names and Function of Each Part

Name and Function of LCD / LED / Operation Key

Functions of LCD
Digital Display 1
Indicates power factor value.
TEST Status
"TEST" sign lights up during the operation
tests for the connecting/disconnecting.
tests for the connecting/disconnecting.
Turns on combination setting.
*Since this LCD display is only for the explanation here, the acutual displays are different from the above.

A Name and the Work of Terminal.

VAR-6A

VAR-12A

Terminal Name	Terminal Number	Detailed Explanation
Auxiliary Power Terminal	MА, Мв	Terminals for inputting auxiliary power for this device.
Earthing Terminal	$\stackrel{\text { I }}{\underline{-}}$	Terminal for earthing.
Non-connection Terminal	NC	They are not in use. Please do not connect.
Current Input Terminal	1S, 1L, 2S, 2L, 3S, 3L	Terminals for inputting the current (CT secondary signal) to the measurement circuit.
Connection Disable / Disconnection Disable Input Terminal	CS+, TS+, TA/S-	Connection disable input terminal : CS+ Disconnection disable input terminal :TS+ Disable signal :TA/S- Terminals for inputting the connection disable signal to disable the connection operation. Terminals for disconnection disable signal to disable the disconnection operation.
Forced Disconnection Signal Input Terminal	TA/S-, TB	Terminals for inputting the signal for forced disconnection of capacitor circuits that are closed by automatic control.
Connecting Completion / Disconnecting Completion Output Terminal	CE+, TE+, E-	Connecting completion output terminal: CE+ Disconnecting completion output terminal: TE+ Completion signal common:E- Terminals for outputting connecting completion signal when all the capacitors are connected and disconnecting completion signal when all the capacitors are disconnected.
Voltage Input Terminal	P0, P1, P2, P3	Terminals for inputting the voltage (VT secondary signal) to the measurement circuit. Direct connections can be made in the case of 220 V and 110 V circuit. In $3 \phi 3 \mathrm{~W}$, do not connect to P2 terminal for $3 \phi 4 \mathrm{~W}$.
Control Signal Output Terminal	$\begin{aligned} & \hline \mathrm{C} 1 \sim 6, \mathrm{COM} 1 \\ & \mathrm{C} 7 \sim 12, \mathrm{COM} 2 \\ & \hline \end{aligned}$	Terminals for connecting the signal circuit for capacitor Connection/Disconnection.

4. Explanation of Control and Movement

4.1 Details of Display of Power Factor Status and Auto/Manual Control Changeover

Details of Display of Power Factor Status and Auto/Manual Control Changeover is shown below.

4.2 Status of Power Factor

Status Indication of Power Factor

LEAD OUT \triangle : This LED will light up on when Power Factor enters a Lead Out Area.
PROPER \square : This LED will light up on when Power Factor enters a Proper Area.
LAG OUT ∇ : This LED will light up on when Power Factor enters a Lag Out Area (Power Factor is less than Target Power Factor).
LIGHT LOAD \triangleleft : This LED will light up on when Power Factor enters a Light Load Disconnection Area. EXPORT \diamond : This LED will light up on when Power Factor enters a EXPORT Area (power transmission). FORCED DISCONNECTIONO:

This LED will light up on when the forced disconnection signal is inputted.

*The display changes based on the moving average deviations within 16 seconds.
-The Connection Level is the target power factor value.
-The Disconnection Level is defined as:
(Connection Level) - (capacity to be disconnected) $\times 1.2$
-The light load disconnection level is a value calculated as:
$\alpha \times$ (primary voltage setting value) \times (primary current setting value) \times (Light Load Power Ratio)

$$
\begin{aligned}
& 3 \phi 3 \mathrm{~W}: \alpha=\sqrt{ } 3 \\
& 3 \phi 4 \mathrm{~W}: \alpha=3
\end{aligned}
$$

4.3 Auto / Manual Control Changeover

A control set-up is possible among "Manual ON", "Manual OFF", and "Auto" on each capacitor bank.
Refer to" 5.11 Set-up of Auto/Manual Control" (page 37) for the setting method.
(a) "Manual ON" set-up
"Manual ON" set-up (LED for "Manual ON" control lights up) is done by pressing "AUTO / MANUAL" Key, and the control signal for each capacitor will close after the Delay Time passes, regardless of the input conditions.
(b) "AUTO" set-up
"AUTO" set-up (LED for "AUTO" control lights up) is done by pressing "AUTO / MANUAL" Key, and automatic control will start.
If reactive power increases, "LAG OUT" LED lights up, and the control signal of capacitor will close after the Delay Time passes.
If reactive power decreases, "LEAD OUT" LED lights up, and the control signal of capacitor will open after the Delay Time passes.
(c) "Manual OFF" set-up
"Manual OFF" set-up (LED for "Manual OFF" control lights up) is done by pressing "AUTO / MANUAL" Key, and the control signal of capacitor will close for each capacitor immediately, regardless of the input conditions.

* 1. The Auto / Manual changeover is effective from the instant it is operated; There is no necessary for restarting the device after setting.
*2. The "Manual ON" and "Manual OFF" operation is effective even if the connection disable signal or the disconnection disable signal is inputted.
*3. After changing the setting from "Manual OFF" to "Auto", the generation of the capacitor connection signal will not begin until the Delay Time passes.
* 4. Please set to "Manual OFF" for banks that are not connected to capacitors.

4. Explanation of Control and Movement

4.4 Features of each Control

The features of each control is shown below.

Control name	Feature
Cyclic control	The cyclic control is suitable for controlling capacitors with equivalent capacity. Since the number of the switching operation of the vacuum electromagnetic contactors are made equally, long lifetime can be expected. It is necessary to replace all the contactors at the same time.
Priority control	The priority control is suitable for controlling the different - capacity capacitor group in stable load circuit which use the large - capacity capacitor on base and adjusts changes of reactive power on the small - capacity capacitors. But since the switching of certain vacuum electromagnetic contactors will become more frequent than those of others, maintenance and inspections must be made frequently and each contactor must be replaced at the end of their respective lifetime.
Optimal control	The optimal control is suitable for controlling the different - capacity capacitor groups in the circuit where load fluctuation is frequent. But since the switching of vacuum electromagnetic contactors become frequent and not equal, the maintenance and inspections must be performed frequently and each contactor must be replaced at the end of their respective lifetime.

4.5 Cyclic Control Operation

In the cyclic control, the number of the
switching operation of each capacitor circuit are made equally.

- At the time of turning on the power supply, the connection begins with C1 and proceeds as follows:

It operates as follows in the case of 12 circuits.

The disconnection also begins with C 1 at the time of turning on the power supply and proceeds in the same manner as the connection:
$\square \mathrm{C} 1 \rightarrow \mathrm{C} 2 \rightarrow \mathrm{C} 3 \rightarrow \mathrm{C} 4 \rightarrow \mathrm{C} 5 \rightarrow \mathrm{C} 6 \square$

It operates as follows at the time of 12 circuits.
$\square \mathrm{C} 1 \rightarrow \mathrm{C} 2 \rightarrow \cdots \cdots \cdots \rightarrow \mathrm{C} 11 \rightarrow \mathrm{C} 12 \square$
The cyclic control is suitable for controlling capacitors with equivalent capacity. Since the switching operation of the vacuum electromagnetic contactors are made equally, long lifetime can be expected. It is necessary to replace all the contactors at the same time.

- When "Combination ON/OFF" set-up is "ON", a control method serves as only cyclic control.

4.6 Priority Control Operation

- In the priority control method, priorities are attached to the connection and disconnection of each capacitor.
- Upon turning on the power supply, the connection sequence begins with C 1 and proceeds as follows:
$\mathrm{C} 1 \rightarrow \mathrm{C} 2 \rightarrow \mathrm{C} 3 \rightarrow \mathrm{C} 4 \rightarrow \mathrm{C} 5 \rightarrow \mathrm{C} 6$
It operates as follows at the time of 12 circuits.

$$
\mathrm{C} 1 \rightarrow \mathrm{C} 2 \rightarrow \cdots \cdots \cdots \rightarrow \mathrm{C} 11 \rightarrow \mathrm{C} 12
$$

- In the disconnection sequence, disconnection proceeds sequentially, starting from the last capacitor circuit that was closed. In other words, it proceeds in the reverse order of the connection sequence.
$\mathrm{C} 1 \leftarrow \mathrm{C} 2 \leftarrow \mathrm{C} 3 \leftarrow \mathrm{C} 4 \leftarrow \mathrm{C} 5 \leftarrow \mathrm{C} 6$
It operates as follows at the time of 12 circuits.
$\mathrm{C} 1 \leftarrow \mathrm{C} 2 \leftarrow \cdots \cdots \cdots . \mathrm{C} 11 \leftarrow \mathrm{C} 12$
- The priority control is suitable for controlling the different - capacity capacitor group in stable load circuit which use the large - capacity capacitor on base and adjusts changes of reactive power on the small-capacity capacitors. But since the switching of certain vacuum electromagnetic contactors will become more frequent than those of others, maintenance and inspections must be made frequently and each contactor must be replaced at the end of their respective lifetime.
- Priority control cannot be performed when "Combination ON/OFF" set-up is "ON." Control method serves as only cyclic control.

4. Explanation of Control and Movement

4.7 Optimal Control Operation

In the optimal control, connection and disconnection is selectively performed for one capacitor circuit with the most appropriate capacity that will keep the lagging reactive power within the target power factor.

- In the connection, capacitors are cut off sequentially in order to decrease capacity until the power factor becomes the closest to the target power factor and the lag is minimized at the same time.
- Capacitors are cut off sequentially in order to decrease capacity until the power factor becomes the closest to the target power factor but it is never below the target power factor.
- The optimal control is suitable for controlling the different - capacity capacitor groups in the circuit where load fluctuation is frequent. But since the switching of vacuum electromagnetic contactors become frequent and not equal, the maintenance and inspections must be performed frequently and each contactor must be replaced at the end of their respective lifetime.
- At the time of turning on the power supply, the device first operates in the cyclic control mode until all capacitors $\mathrm{C} 1 \sim 6$ (it is C 1 to C 12 at the time of 12 circuits) are closed. The device then begins the optimal control operations.
- When "Capacity Auto/Hold" set-up is on "Hold" set-up and each capacity is the same, it becomes cyclic operation.
- The optimal control is not possible when the "Combination ON/OFF" set-up is "ON." Control method serves as only cyclic control.

4.8 Capacitor Changing Control at Optimal Control Operation

\square Optimal control is suitable for circuits with sharp load fluctuation. However, in case the load decreases gradually when multiple capacitors are closed, capacitors will open from the smallest capacity, and the capacitor with the largest capacity will remain last.
\square In the area where light load disconnection is not made, the disconnection level is determined by the capacity. Thus this last capacitor will not be cut off.
\square When the power factor leads out further than 95\% (Changing Area) in this status, changing control takes place where large capacity capacitor opens and small capacity capacitor closes.

Setting value of Target Power Factor is not 100%.

Setting value of Target Power Factor is 100%.

4. Explanation of Control and Movement

4.9 Light Load Disconnection Operation

\square In order to prevent overloading under light load conditions, the closed capacitors are sequentially cut off when the load falls below the power value determined from the low load power ratio setting value. (Please refer to page 32 about the calculation formula of the light load power ratio.)
\square When the active power decreases and the "LIGHT LOAD" LED lights up and this condition continues for the Delay Time, one capacitor circuit is cut off. Thereafter, one capacitor circuit is cut off each time the Delay Time passes as long as the "LIGHT LOAD" LED lights up.
\square When "EXPORT" LED lights up, the same operation as the case when "LIGHT LOAD" LED lights up is carried out.
\square The order of disconnecting capacitor is as follow:
(1) In cyclic control, capacitor circuits are turned OFF. This starts from the first capacitor circuit where the connection signal is outputted. (Disconnection proceeds in the same order as connection.)
(2) In priority control, capacitor circuits are turned OFF. This starts from the last capacitor circuit where the connection signal is outputted. (Disconnection proceeds in the reverse order of connection.)
(3) In optimal control, capacitor circuits are turned OFF in order of the output terminal number. This starts from the lowest terminal number.

4.10 Forced Disconnection Operation

Forced disconnect operation is used to open the capacitor circuits when the influence of harmonic interferences is expected, and during nighttime operations.
\square Forced disconnection input terminals, "TA/S-" and "TB", are provided to disconnect the capacitor circuits closed by automatic control.
When these input terminals are cut, all capacitors are cut off simultaneously.
When the signal across the input terminals becomes OFF, the control begins.
Please use the applicable for the switching of 5 V DC, 25 mA for shorting.

Example of Control by Time Switch

5. Set-up

5.1 Flow of Set-up (Measure Set-up Mode)

In order to perform control and measurement, it is necessary to set-up Phase/Wire Type, Primary Voltage, Primary Current, etc. in Measure Set-up Mode.
It changes from Operation Mode to Measure Set-up Mode, and required items are set-up.
The items you do not set up become the initial contents. (Please refer to page 50 for the initial contents.) Please refer to after page 26 for the detailed setting.
If ENTER Key is pressed over 2 seconds, it changes from Operation Mode to The Set Value Confirmation Mode. A setting value cannot be changed in The Set Value Confirmation Mode.

- The setting method

(1) It changes to Measure Set-up Mode by pressing ENTER Key and CAPACITY Key for 2 seconds simultaneously.
(2) It changes to each set-up menu by pressing \oplus Key or Θ Key.
(3) Set-up in each menu. (Please refer to page 26 to page 29)
(4) Press \oplus Key or \bigoplus Key to set-up each setting value and complete set-up by pressing (ENTER) Key.
(5) Press ENTER Key after selecting "Measure Set-up Menu END", after all the set-ups are completed.
(6) Press ENTER Key after changes "yES" Display.

*6: This set-up is skipped when a "Primary Current" set-up is except "SP.".
*7: It changes to Measure Set-up Mode.
*8: It changes to The Set Value Confirmation Mode.

Note 2. The example of Display of "Measure Set-up Mode" and "The Set Value Confirmation Mode"

(Measure Set-up Mode) (The Set Value Confirmation Mode)
SET flickers in "The Set Value Confirmation Mode".

- Please set up "Measure Set-up Menu 1", or check the contents of setting. If the set-up is wrong, the measurement is not appropriately carried out.
- Set-up other items if needed.

When it is not set-up, it operates at the initial contents. (please refer to page 50)

- Restart of device will stop measurement (a measurement display and a control output) for several seconds.

5. Set-up

5.2 Flow of Set-up (Control Set-up Mode)

In order to perform the detailed control set-up, it is necessary to set-up Target Power Factor, Delay Time, Capacity, etc. in Control Set-up Mode.
It changes from Operation Mode to Control Set-up Mode, and a required item has to be set-up.
The items you do not set up are the initial contents. (Please refer to the page 50 for the initial contents.)
Please refer to after page 30 for the setting details.

- The setting method

(1) It changes to Control Set-up Mode by pressing SET CONT. Key for 2 seconds simultaneously.
(2) It changes to each set-up menu by pressing \oplus Key or Θ Key.
(3) Set-up in each menu. (Please refer to page 30 to page 35)
(4) Press \oplus Key or Θ Key to set-up each setting value and complete set-up by pressing ENTER) Key.
(5) Press ENTER Key after selecting "Control Set-up Menu END", after all the set-ups are completed.
(6) Press ENTER Key after changing to "yES" Display.

*1: In VAR-6A, it is C6. In VAR-12A, it is C12.

Note 1. \square : Press KeyPress Key for over 2 seconds.

- When "Combination ON/OFF" set-up is "ON", control method becomes cyclic control.
- Set-up other items if needed.

5. Set-up

5.3 Measure Set-up Menu 1 (Set-up of Phase/Wire Type • Using VT/direct input • Primary Voltage • Primary Current)

How to set up measurement.
"Measure Set-up Menu END" is displayed by pressing ENTER Key and CAPACITY Key for 2 seconds simultaneously in Operation Mode.
Furthermore, "Measure Set-up Menu 1" is selected by pressing \oplus Key or Θ Key.
Then, the following set-ups are possible.

continues onto the next pages.

5. Set-up

Continuation of Measure Set-up Menu 1

Note	When the "Measure Set-up" is changed, all the capacitors which is connecting are cut off and the control starts again.

5.4 Measure Set-up Menu 2 (Setup of Combination)

How to set up combination.
"Measure Set-up Menu END" is displayed by pressing ENTER Key and CAPACITY Key for 2 seconds simultaneously in Operation Mode.
Furthermore, "Measure Set-up Menu 2" is selected by pressing \oplus Key or Θ Key.
Then, the following set-ups are possible.

Note	- When "Combination ON/OFF" set-up is "ON", control method serves as only cyclic control. - When this Set-up is changed, all the connecting capacitors are cut off and the control starts again.

5. Set-up

5.5 Control Set-up Menu 1 (set-up of Target Power Factor)

How to set up target power factor.
"Control Set-up Menu End" is displayed by pressing SETCONT. Key for 2 seconds in Operation Mode.
Furthermore, "Control Set-up Menu 1" is selected by pressing \oplus Key or Θ Key.
Then, the following set-ups are possible.

5.6 Control Set-up Menu 2 (Set-up of Light Load Power Ratio)

How to set up light load power ratio.
"Control Set-up Menu END" is displayed by pressing SETCONT. Key for 2 seconds in Operation Mode.
Furthermore, "Control Set-up Menu 2" is selected by pressing \oplus Key or Θ Key.
Then, the following set-ups are possible.

* Please refer to the following page for the determination method of the setting value of "Light Load Power Ratio".

Continuation of Control Set-up Menu 2

"Light Load Power Ratio" is a setting value for "Light Load Disconnection" of a capacitor.
"Light Load Disconnection" is a function for forced disconnection of capacitor to prevent power factor from leading out too much.
Please decide the setting value of "Light Load Power Ratio" from power at nighttime based on the daily load curve.

(a) Calculate "Light Load Disconnection Level" based on the daily load curve. "Light Load Disconnection Level" is a value about 20% to 40% higher than the power at nighttime. Please decide the margin, taking into account load charge during night time.
(b) Calculate "Light Load Power Ratio".

Calculate the following formula based on primary voltage and primary current.

$$
\text { Light Load Power Ratio }=\frac{\text { Light Load Disconnetion level }}{\alpha \times \text { Primary Voltage } \times \text { Primary Current }} \times 100(\%) \quad \begin{aligned}
& 3 \phi 3 \mathrm{~W}: \alpha=\sqrt{3} \\
& 3 \phi 4 \mathrm{~W}: \alpha=3
\end{aligned}
$$

Example

When "Phase/Wire Type" is $3 \phi 3 \mathrm{~W}$ and primary voltage is 6600 V and "Primary Current" is 100 A and Light Load Disconnection Level is 115W, "Light Load Power Ratio" becomes as follows.

Light Load Power Ratio $=\frac{115 \mathrm{~kW}}{\sqrt{3} \times 6.6 \mathrm{kV} \times 100 \mathrm{~A}} \times 100 \%=10 \%$
Therefore "Light Load Power Ratio" is set at 10%.

5.7 Control Set-up Menu 3 (Set-up of Delay Time)

How to set up delay time.
"Control Set-up Menu END" is displayed by pressing SETCONT. Key for 2 seconds in Operation Mode.
Furthermore, "Control Set-up Menu 3" is selected by pressing \oplus Key or Θ Key.
Then, the following set-ups are possible.

5.8 Control Set-up Menu 4 (Set-up of Control Method)

How to set up control method.
"Control Set-up Menu END" is displayed by pressing SETCONT. Key for 2 seconds in Operation Mode.
Furthermore, "Control Set-up Menu 4" is selected by pressing \oplus Key or \odot Key.
Then, the following set-ups are possible.

Note	• When this Set-up is changed, all the connecting capacitor are cut off and control starts again. \cdot Please refer to pages 16 to 19 about the operations of each control.

5.9 Control Set-up Menu 5 (Set-up of Capacity)

How to set up Capacity.
A set-up for automatic recognition and manual input of capacity are possible by this set-up.
After the automatic recognition, by setting "HoLd", automatic recognition is stopped and the capacity recognized automatically is fixed. You can also manually input.
"Control Set-up Menu END" is displayed by pressing SET CONT. Key for 2 seconds in Operation Mode. Furthermore, "Control Set-up Menu 5" is selected by pressing \oplus Key or \bigodot Key.
Then, the following set-ups are possible.

Note
The capacity is stored in non-volatile memory and will not be cleared even in the event of power failure.

5.10 TEST Menu (Operation Tests for the Connecting/Disconnecting)

How to set up operation tests for the connecting/disconnecting.
"Measure Set-up Menu END" is displayed by pressing ENTER Key, and CAPACITY Key for 2 seconds simultaneously in Operation Mode.
Furthermore, "TEST Menu" is selected by pressing \oplus Key or Θ Key.
Then, the following set-ups are possible.

@ WARNING	• During "Operation Tests for the Connection/Disconnection" with the high voltage circuit live, set the "Delay Time" conforming to the capacitor discharge device. Carrying out the test with "Delay Time" set to be shortter than it should be may cause capacitor breakage accidents.

5.11 Set-up of Auto/Manual Control

Change of "MANUAL ON" / "AUTO" / "MANUAL OFF" is performed by pressing the AUTO/MANUAL Key of the applicable circuits after status of lock is released.
A status of lock is released by pressing LOCK/RELEASE Key for 2 seconds. (LED flickers)
A status of release is locked by pressing LOCK/RELEASE Key for 2 seconds again. (LED lights up) The contents of change are reflected by changing into the Lock status.

Note 1. A status of release continues, unless a status of Lock is changed.
Note 2. In a status of release, the device is controlling by the previous setting
Note 3. The LOCK/RELEASE Key lock and release circuit1-6 or circuit7-12 by package.

5.12 Priority Order of Control

The priority order of control is as follows:

6. Operation

6.1 Changing of the Display

The display element switches by pressing (DISPLAY Key.

6.2 Changing of the Phase

The display element of current phase or voltage phase switches by pressing PHASE Key.
$<$ Example of display change (current) $>$

$<$ Example of display change (voltage) $>$

*1.In $3 \phi 4 \mathrm{~W}$, display of phase is " $1-\mathrm{n}$ " or "2-n" or " $3-\mathrm{n}$ ".

Note	A display of voltage changes by "Phase/Wire Type".
$\left\{\begin{array}{l}3 \phi 3 \mathrm{~W}: \text { phase to phase voltage } \\ 3 \phi 4 \mathrm{~W}: \text { phase to neutral voltage }\end{array}\right.$	

6.3 Display of Capacity

In the Measurement display, the memorized capacity is displayed by pressing (CAPACITY) Key for 1 second. Furthermore, The capacity display of each circuit is displayed by pressing \oplus Key or \bigodot Key. Then, the following set-ups are possible.

*VAR-6A is the circuit 1-6, and VAR-12A is the circuit 1-12.

6.4 Reset of Capacity

When "Capacity Auto/HoLd" set-up is "Auto", capacity set as "Auto" can be reset by pressing (CAPACITY) Key and (PHASE) Key for 2 seconds simultaneously in Display of Capacity. However, capacitor circuits set as "Manual ON" or "Manual OFF" can not be reset.
In addition, when "Capacity Auto/HoLd" set-up is "HoLd", capacity set as "Auto" can not be reset by pressing (CAPACITY) Key and (PHASE) Key for 2 seconds simultaneously in Display of Capacity.

7. Others

7.1 Operation

Operation of device other than "Operation Mode"

Status	Measurement	Display		The output point of contact for capacitor control
		Measurement (LCD)	Power Factor Status (LED)	
For several seconds after the auxiliary power supply injection	A measurement is not possible.	No display.		All the circuits are "open".
Set-up Mode	A measurement is possible	No display.	The same operation as Operation Mode	The same operation as Operation Mode
During a blackout	A measurement is not possible.	No display.		All the circuits are "open".
Second blackouts more than 3 cycles	A measurement is not possible.	No display.		All the circuits are "open".

When a blackout occurs, the operation of this device will stop, and all displays on this device will disappear, all the output point of contact for capacitor control become "open". When the power supply revives, the new start of the capacitor control action is carried out from C1.

Device operation by the input power supply status

Measurement display		
Power Factor	The display of power factor becomes 100%, when the display of voltage is " 0 V ", or when the display of current is " $O A$ ".	-
Current	The display of current becomes " $0 A$ ", when Input current is less than 0.4% of rated current.	More than 9999 shows 9999.
Voltage	The display of voltage becomes " 0 V ", when input voltage" is less than " 6 V ".	
Active Power	The display of active power becomes "0W", when the display of voltage is " 0 V ", or when the display of current is " 0 A ".	
Reactive Power	The display of reactive power becomes "Ovar", when the display of voltage is " 0 V ", or when the display of current is "0A".	
Apparent Power	The display of apparent power becomes "OVA", when the display of voltage is " $O V$ ", or when the display of current is "0A".	

Notes in case of combination
(1) In the following case, please set "Combination ON/OFF" to "OFF" by the side of a master.
(1)When the slave side breaks down, or the auxiliary power supply by the side of a slave is OFF.
(2) When the capacitor control by the side of a slave is set as all the circuit manual operation.
(2) When forced disconnection signal is used, please connect with both a master and a slave.

7.2 Troubleshooting

If unusual sound, smell, emitting smoke, or fever occur from the device, turn off the power immediately. If there is a problem, confirm the following points before taking out to repair.

Phenomenon		Possible causes	Countermeasure
	Setting value in Measure Set-up can not be changed.	Mode is "The Set Value Confirmation Mode".	Please return to Operation Mode and change the setting value on Measure Set-up Mode.
	Capacity cannot be cleared.	"AUTO/MANUAL" set-up is "Manual ON" or "Manual OFF"	Reset capacity after setting "AUTO/MANUAL" to "Auto".
		"Capacity Auto/HoLd" set-up is "HoLd".	Reset capacity after setting "Capacity Auto/HoLd" to "HoLd"
$\begin{aligned} & \frac{\pi}{0} \\ & \frac{0}{0} \end{aligned}$	Display does not light up.	Auxiliary power is not impressed between MA and MB.	Impress auxiliary power between MA and MB.
		Inside power supply is out of order.	It cannot be repaired by the customer. Contact to the service network.
	Display does not light up immediately.	It is normal. Initialization of an internal circuit is performed after the auxiliary power supply injection.	Keep using.
	LCD display becomes black.	It may become black under the influence of static electricity.	After a while, it will disappear.
	"END" display is kept on the display.	Setting has not been completed.	Press the ENTER Key.
	Capacitor Connection Signal is output, although load becomes leading power. Capacitor Disconnection Signal is output, although load becomes leading power.	1. The polarity of VT connection is wrong. 2. The polarity of CT connection is wrong. 3. The wrong phase is inserted to the detection VT. 4. The wrong phase is inserted to the detection CT.	Check the wiring.
	Capacitor is not disconnected although "LEAD OUT" LED lights up.	The terminals for the disconnection disable signal (TS+ and S-) are shorted.	Check the wiring.
	Capacitor is not connected although "LAG OUT" LED lights up.	1. Connection disable signal (CS+ and S-) are shorted. 2. Forced disconnection signal (TA/S- and TB) are shorted.	
	"LAG OUT" LED does not light up and capacitor is not connected, although power factor lags target power factor.	Light Load Disconnection Area	Check "Light Load Power Ratio".
		Export Area	Check the wiring.
	Capacitor repeats connection and disconnection.	"Capacity Auto / HoLd" is "HoLd" and The setting value of all the capacity manual input become "Okvar". Or the wrong value is set-up.	Check the set-up.

After-sale service

When there is an unclear point or when the device breaks down, please contact to the service network. (See the back cover of this User's Manual.)

Installation 1. Dimensions
VAR-6A

VAR-12A

Installation 2. Attachment

1 Panel Cutout

Cut out the panel like the below.
Panel Cutout (It is possible to attach the device on a board from 1.6 mm to 4 mm .)

2 Attachment Location
Contrast of LCD changes if looked at different angles.
The optimal angle is as follows. Attach the device to the panel with the optimal angle.

3 Attachment Method
Put the device onto the panel surface from the front side and fix it by using embedded mounting fittings and fixing screws (2 places)
Tighten the fitting screw to the torque from 0.61 to $0.82 \mathrm{~N} \cdot \mathrm{~m}$.

Embedded Mounting Fittings

Note	At the time of attaching this device at the edge of the board, decide attachment location in consideration for the wiring space.

Installation 3. Wiring

Solderless Terminal

Use solderless terminal that comply with the size of the electric line.

	Connecting Completion Output terminal Disconnecting Completion Output terminal Connection Disable Input terminal Disconnection Disable Input terminal Forced Disconnection Signal terminal Current Input terminal Voltage Input terminal Auxiliary Power terminal	Control Signal Output terminal
Screw Specification	M4 screw	M3.5 screw
Solderless Terminal	For M4 screw of outer diameter below 8.5	For M3.5 screw of outer diameter below 7.1
Tighting Torque	$0.98 \sim 1.47 \mathrm{~N} \cdot \mathrm{~m}$	$0.61 \sim 0.82 \mathrm{~N} \cdot \mathrm{~m}$

Outer diameter

2 Terminal Cover

(1) Insert the terminal cover for power supply into the terminal stand as shown in the right figure.
(2) Since the terminal cover for input and output has structure to open, close it.

3 Wire connections

Tighten a terminal screw on the terminal stand.

\triangle CAUTION

Do not connect three or more electric wires to one terminal. It can generate heat and cause a fire.

4 Checking
Check that there is no mistake in wire connections after completing wire connetion.

5 Terminal cover attachment

After checking, close the terminal cover till it makes clicking sound.

Do not perform hot-line jobs.

Do not perform hot-line work.
It can cause on electrification electric burn, fire and damage by fire on apparatus. Installation of protection fuse etc. is recommended to VT and auxiliary power.

Do not open the secondary side of CT circuit.

Correctly connect the secondary side signal of CT to the CT connection terminal. Incorrect connection of CT or disconnection of the secondary side of CT induces high voltage on the secondary side. It can cause insulation breakdown of the secondary winding which can result in burnout accidents.

Do not short circuit the secondary side of VT.

Correctly connect secondary side signal of VT to the VT connection terminal. Incorrect connection of VT or short circuiting in the secondary side of VT causes excessive current to pass in the VT secondary side. It can cause burnout of the secondary winding which can result in insulation breakdown of the primary winding and inter phase short-circuiting in the end.

Connect electric wire certainly to a terminal.

If the connection to a terminal is not as tight as it should be and result in a measurement mistake.

```
Do not forget wiring of "1L"," 2L" and " 3L" for pass.
```

When the L side of CT circuit is common wire in " $3 \phi 4 \mathrm{~W}$ ", it is necessary to short-circuit "1L", " 2 L " and "3L" terminal of this device. In the case of $3 \phi 3 \mathrm{~W}$, " 1 L " and " 3 L " should be short circuited.

Do not use unsuitable electric wire.

Electric wire size should be suitable for rated current and rated voltage. Use of unsuitable electric wire can cause a fire.

Do not strongly pull the wire.

If terminal wire is pulled strongly, there is a possibility that an input-and-output terminal can break away. Tensile load is less than 39.2N.

Attach a terminal cover.

Attach a terminal cover.
If it is not attached, it can cause electrification.

Do not impress unusual voltage.

At the time of the resisting pressure examination of the high voltage apparatus, carry out grounding to avoid any negative influence.
The device can break down if more than 2000 V is impressed for 1 minute .

Do not connect to Non-connection terminal.

Do not connect to Non-connection terminal for the purpose of relay etc.

Auxiliary Power

Impress the appropriate voltage to auxiliary power.

Impress the right voltage to auxiliary power.
If inappropriate voltage is impressed, it can cause a fire or breakdown of the device.

To secure safety, the connecting work should be done by a qualified person in electric wiring work. (electrician)

1 Connection with vacuum electromagnetic contactor for capacitor switching.
This device has a constant excitation system that outputs no-voltage 1a contact at each bank that keeps continuously ON at connection and continuously OFF at disconnection as a capacitor control signal.
Upon connecting with the vacuum electromagnetic contactor for capacitor switching, be sure to use auxiliary relay.
(Refer to the connection with auxiliary relay C 1 to C 6 in page 47.)
Use the counter electromotive force absorption diode built-in relay as the auxiliary relay for DC(100 VDC).

2 Reversed Phase

This device operates on reversed phase without changing the wire connections.

3 Forced Disconnection Signal

- When ON signal is input on the forced disconnection signal terminal TB and terminal TA/S, all the connecting capacitors in automatic control are disconnected.
- When OFF signal is input on terminal TB and TA/S, the control operation restarts.
- Use input contacts suited for the switching of $5 \mathrm{~V} \mathrm{DC}, 25 \mathrm{~mA}$.
*This signal can be used for the following applications.
(1)To disconnect the capacitor by an external time switch for purpose of avoiding leading-out of power factor during night time.
$\left(\begin{array}{ll}\text { Our recommended type: } \\ \text { skip-day-type } & \text { TSE-2SA Series } \\ \text { weeky-type } & \text { TSE-2WA Series }\end{array}\right)$

(2)To disconnect the capacitor for purpose of protecting the capacitor and the reactor, when content rate of harmonics is rising by use of a harmonic meter, etc.
$\left[\begin{array}{l}\text { Our recommended type: } \\ \text { ME110NSR-HAH }\end{array}\right]$

4 Closing Prohibition Signal - Opening Prohibition Signal

- When an ON signal is inputted across the closing prohibition signal terminal CS+ and terminal TA/S-, the closing control of capacitors is stopped. Also, when an ON signal is inputted across the opening prohibition signal terminal TS+ and terminal TA/S-, the opening control of capacitors is stopped. Control operations are restarted when the input signal becomes OFF. Please use input contacts adapted for the switching of 5 V DC, 15 mA .

5 Combination

- At the time of 2 set combination use, do use connecting completion terminal (CE+), disconnecting completion terminal (TE+), completion terminal ($\mathrm{E}-$), connection disable terminal (CS+) and disconnection disable terminal (TS+).
- When "Combination ON/OFF" set-up is "ON", the cyclic control operates.

6 Exemplary Overall Connections Diagram

7 Connections for the capacitor control circuit

Example of a latching type vacuum electromagnetic contactor

Example of a non-latching type vacuum electromagnetic contactor

Note1. In VAR-6A, C $\square \mathrm{X}$ in the figure shows C 1 X -C6X
Note2.In VAR-12A, C $\square \mathrm{X}$ in the figure shows C1X-C12X.
Note3. This diagrams are schematic diagrams. Prepare protected circuits and etc. if needed.

8 Connections for Performing Forced Disconnection

9 Combination

10 Without VT

$3 \phi 3 \mathrm{~W}$ (When the L side of CT circuit is common)

$3 \phi 4 \mathrm{~W}$ (When the L side of CT circuit is common)

Note: In case of using by balanced load also, connect at the upper diagram.

Specifications

Specifications

Type		VAR-6A, VAR-12A			
Measurement Element	Power Factor	$\pm 2.0 \%$			
	Current	$\pm 1.0 \%$			
	Voltage	*1. In case of $3 \phi 3 \mathrm{~W}$ and $3 \phi 4 \mathrm{~W}$, current on neutral phase is not measured. *2. $3 \phi 3 \mathrm{~W}$ measures phase to phase voltage, while $3 \phi 4 \mathrm{~W}$ measures phase to neutral voltage.			
	Active Power	$\pm 1.0 \%$			
	Reactive Power				
	Apparent Power				
Response Time		2 seconds(Note1)			
Input Rating	Voltage	$3 \phi 3 \mathrm{~W}: \mathrm{AC} 110 \mathrm{~V} / 220 \mathrm{~V}$ $3 \phi 4 \mathrm{~W}: M a x . A C 254 V$			
	Current	AC5A			
	Frequency	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$			
Phase Sequence		$3 \phi 3 \mathrm{~W} / 3 \phi 4 \mathrm{~W}$			
Set-up Items	Measure Set-up	Phase/Wire Type($3 \phi 3 \mathrm{~W}, 3 \phi 4 \mathrm{~W}$),Using VT/direct input(YES,NO), Direct Voltage $(3 \phi 3 \mathrm{~W}$:Phase to Phase Voltage110V/220V, $3 \phi 4 \mathrm{~W}$:Phase to Neutral Voltage63.5V-254V),Secondary Voltage(Phase to Neutral Voltage63.5V-120V),Primary Voltage(220V-750kV),Primary Current(5A-30kA),Combination, Master/Slave			
	Control Set-up	Target Power Factor (LAG85\%-100\%-LEAD95\%), Delay Time (1-10minutes), Light Load Power Ratio (0-35\%), Control method (1: Cyclic 2:Priority 3:Optimal), Capacity Auto/HoLd, Capacity Manual Input (0-9999kvar)			
Display	Display for Indication	LCD, LED			
	Maximum Number of Display Digits	Digital display 4 figures			
	Capacity	Digital display 4 figures			
	Power Factor Status	LEAD OUT, PROPER, LAG OUT, LIGHT LOAD, EXPORT, FORCED DISCONNECTION			
	Conditions of Connection / Disconnection for Capacitor	VAR-6A: output conditions of connecting/disconnecting signals for capacitor C1-6. VAR-12A: output conditions of connecting/disconnecting signals for capacitor C1-12.			
	Conditions of Auto / Manual Control for Capacitor	VAR-6A: conditions of auto/manual for capacitor C1-6. VAR-12A: conditions of auto/manual for capacitor C1-12.			
	Updating Cycle	1 second			
Control Method	Automatic	Cyclic / Priority / Optimal			
	Manual	Manual ON / Manual OFF			
Capacitor Control Output	Circuit Total Number	VAR-6A: 6 circuit VAR-12A: 12 circuit			
	Output Contact	Latching output form a			
	Contact Capacity	AC250V 1A, DC110V 0.1A			
Connection Conditions		"LAG OUT" LED stays lit past Delay Time.			
Disconnection Conditions		"LEAD OUT" LED stays lit past Delay Time.			
Operation Completion Output	Connecting Completion	OFF across terminals CE+ and E-			
	Disconnecting Completion	OFF across terminals TE+ and E-			
	Output Contact	Form A, contact capacity: 24V DC, 0.1A			
Operation Disable Input	Connection Disable	ON across terminals CS+ and TA/S-			
	Disconnection Disable	ON across terminals TS+ and TA/S-			
	Forced Disconnection	ON across terminals TB and TA/S-			
	Input Contact	Connection Disable • Disconnection Disable : Form A, contact capacity : 5V DC, 15mA Forced Disconnection : Form A, contact capacity : 5V DC, 25mA			
Power Failure Compensation		Non-volatile memory (Items: setting value, Capacity)			
Apparent Power Consumption	Voltage Circuit	Each Phase 0.1VA (110V), 0.2VA (220V)			
	Current Circuit	Each Phase 0.1VA			
	Auxiliary Power Circuit	VAR-6A	11VA (AC110V) 13VA (AC220V) 6W (DC110V)		
		VAR-12A 15 VA (AC110V) 19VA (AC220V) 9W (DC110V)			
Auxiliary Power Supply		AC100-240V (-15\%, +10\%) 50/60Hz DC100V (-25\%, +40\%)			
Dielectric Strength		Across electric circuit group and frame earthing terminal AC2000V (50/60Hz) 1 minute			
		Across current circuit / voltage circuit group and auxiliary power Across current circuit / voltage circuit group and capacitor control output circuit / completion AC2000V $(50 / 60 \mathrm{~Hz}) 1$ minute output / disable input circuit group Auxiliary power / capacitor control output circuit and completion output / disable input circuit group			
		Across voltage circuit group and current circuit group			AC20
		Combination of two circuit (capacitor control output circuit, completion output, disable input circuit)			AC20
Insulation Resistance		Across electrical circuit and case: $10 \mathrm{M} \Omega$ at 500 V DC			
Ambient Temperature		$-5^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$ (day average usage temperature: $35^{\circ} \mathrm{C}$ or below)			
Ambient Humidity		30-85\% RH or below; without condensation			
Weight		0.9 kg			
Dimension		144 (H)* 144 (W)* 98 (D)			
Attachment Method		Embedding attachment			

Specifications

Set-up Table

Set-up Menu No.			Set-up Item	Initial Content	VAR-6A	VAR-12A	Notes
1	1.1	1.1.1	Phase/Wire Type	3 P 3 (3\$3W)	\bigcirc	\bigcirc	
		1.1.2	Using VT/direct input	YES (Using VT)	\bigcirc	\bigcirc	
		1.1.3	Direct Voltage(3 33 W)	110V	\bigcirc	\bigcirc	
		1.1.4	Direct Voltage(3¢4W)	254 V	\bigcirc	\bigcirc	
		1.1.5	Secondary Voltage	63.5 V	\bigcirc	\bigcirc	
		1.1.6	Primary Voltage	6.6 kV	\bigcirc	\bigcirc	
		1.1.7	Special Primary Voltage	6.60 kV	\bigcirc	\bigcirc	
		1.1.8	Primary Current	100A	\bigcirc	\bigcirc	
		1.1.9	Special Primary Current	100.0A	\bigcirc	\bigcirc	
	1.2	1.2.1	Combination ON/OFF	OFF (single operation)	\bigcirc	\bigcirc	
		1.2.2	Master/Slave	Master	\bigcirc	\bigcirc	
	1.3	1.3.1	Operation Tests for the Connecting/Disconnecting	No (Test non-execution)	\bigcirc	\bigcirc	
2	2.1	2.1.1	Target Power Factor	LAG99.5\%	\bigcirc	\bigcirc	
	2.2	2.2.1	Light Load Power Ratio	10\%	\bigcirc	\bigcirc	
	2.3	2.3.1	Delay Time	5 min	\bigcirc	\bigcirc	
	2.4	2.4.1	Control Method	1 (Cyclic)	\bigcirc	\bigcirc	
	2.5	2.5.1	Capacity Auto/HoLd	Auto (automatic recognition)	\bigcirc	\bigcirc	
		2.5.2	Capacity Manual Input of C1	0	\bigcirc	\bigcirc	
		2.5.3	Capacity Manual Input of C2	0	\bigcirc	\bigcirc	
		2.5.4	Capacity Manual Input of C3	0	\bigcirc	\bigcirc	
		2.5.5	Capacity Manual Input of C4	0	\bigcirc	\bigcirc	
		2.5.6	Capacity Manual Input of C5	0	\bigcirc	\bigcirc	
		2.5.7	Capacity Manual Input of C6	0	\bigcirc	\bigcirc	
		2.5.8	Capacity Manual Input of C7	0	-	\bigcirc	
		2.5.9	Capacity Manual Input of C8	0	-	\bigcirc	
		2.5.10	Capacity Manual Input of C9	0	-	\bigcirc	
		2.5.11	Capacity Manual Input of C10	0	-	\bigcirc	
		2.5.12	Capacity Manual Input of C11	0	-	\bigcirc	
		2.5.13	Capacity Manual Input of C12	0	-	\bigcirc	

MEMO

Service network

Country/Region	Company	Address	Telephone
China	Mitsubishi Electric Automation (Shanghai) Limited	80 Xin Chang Road 4th Floor Shanghai Intelligence Fortune Leisure Plaza Huang Pu district Shanghai 200003 P.R.China	$+86-(0) 21-6120-0808$
Indonesia	P.T.SAHABAT INDONESIA.	JL Muara Karang Selatan Blok A/Utara No.1 kav. NO.11 P.O. Box 5045/Jakarta/11050. Jakarta Indonesia.	$+62-(0) 21-6621780$
Korea	MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD.	2 FI. Dong Seo Game Channel Bldg., 1F 660-11 Deungchon-Dong, Kanguseo-Ku, Seoul, 157-030 Korea	$+82-2-3668-6567$
Philippines	EDISON ELECTRIC INTEGRATED, INC.	24th FI. Galleria Corporate Center Edsa Cr, Ortigas Ave. Quezon City, Metro Manila. Philippines.	$+63-(0) 2-643-8691$
Taiwan	Setsuyo Enterprise Co., Ltd.	6F, NO. 105 Wu-Kung 3rd rd., Wu-Ku Hsiang, Taipei Hsien Taiwan	$+886-(0) 2-2298-8889$
Thailand	UNITED TRADING \& IMPORT CO. LTD.	77/12 Bumrungmuang Road, Klong Mahanak, Pomprab Bangkok 10100.	$+66-223-4220-3$

