$F=$ USER'S GUIDE
 JY992D74901D

This manual contains text, diagrams and explanations which will guide the reader in the correct installation and operation of the FX2N-2DA special function block and should be read and understood before attempting to install or use the unit.
Further information can be found in the FX SERIES PROGRAMMING MANUAL(II), FXon/FX1N/FX2n/ FX2Nc SERIES HARDWARE MANUAL of each PLC.

1. INTRODUCTION

The FX2N-2DA type analog output block (hereafter referred to as the FX2N-2DA) is used to convert a digital value of 12 bits into an analog output of two points (voltage and current output), and to forward the values to the Programmable Controller (hereafter referred to as a PLC).
FX2N-2DA can connected to the FXon, FX1n, FX2N, and the FX2nc series Programmable Controllers.

1) The analog output is selected from the voltage or current output by the method of connecting wires. At this time, assume setting to be two channels common analog output.
2) The two analog output channels can accept outputs of 0 to $10 \mathrm{~V} D C, 0$ to 5 V DC, or 4 to 20 mA . (A mixture of voltage/current output is possible.)
3) Resolution is 2.5 mV (0 to $10 \mathrm{~V} D C$) and $4 \mu \mathrm{~A}(4$ to 20 mA$)$.
4) The digital to analog conversion characteristics can be adjusted.
5) The block occupies 8 I/O points which can be allocated from either the inputs or outputs.
6) The data transfer with the PLC uses the FROM/TO instructions.

2. EXTERNAL DIMENSIONS AND PARTS

3. WIRING

*1 Connect a 0.1 to $0.47 \mu \mathrm{~F}$ 25V DC capacitor respective to position *1 when there is voltage ripple in the voltage output or there is a lot of noise.
*2 For voltage output please short circuit IOUT and COM as shown in the diagram.
*3 Channel number enter O.

4. CONNECTION WITH PROGRAMMABLE CONTROLLER

1) The $F_{2} 2 \mathrm{~N}-2 \mathrm{DA}$ and main unit are connected by a cable on the right of the main unit.
2) Up to 4 FX2N-2DA units can connect to the FXon series PLC, up to 5 for FX1N, up to 8 for FX2N or, up to 4 for the FX2NC series PLC, all with powered extension units.
However the following limitation exists when the undermentioned special function blocks are connected.
FX2N: Main unit and powered extension units of 32 points I/O or less. Consumption current available for undermentioned special function blocks $\leq 190 \mathrm{~mA}$
FX2N: Main unit and powered extension units of I/O 48 points or more. Consumption current available for undermentioned special function blocks $\leq 300 \mathrm{~mA}$
FX2NC: Up to 4 undermentioned special function blocks can be connected regardless of the system I/O.
FXon/1N: Main unit and powered extension units. Up to 2 undermentioned special function blocks can be connected regardless of the system I/O.

	FX2N-2DA	FX2N-2AD	FX0N-3A
Consumption current of 24V DC for one unit	85 mA	50 mA	90 mA

The consumption of the above units is to be subtracted from the service power supply of the host PLC.
3) The blocks occupies 8 I/O points (the 8 points can be allocated from either inputs or outputs).
4) FX2N-2DA consumes 5 V DC 30 mA .

The total 5V consumption of all special function blocks connected to either an FX2N, FX2NC main unit or an FX2N extension unit must not exceed the 5 V source capacity of the system.

5. SPECIFICATIONS

5.1 Environmental specification

Item	Content
Directric Withstand voltage	500V AC 1min (between analog output terminals and case)

Environmental specifications other than the above are the same as the main unit of the Programmable Controller. (Refer to the Hardware manual of the Programmable controller)

5.2 Power supply specification and others

Item	Content
Analog circuits	24V DC $\pm 10 \% 85 \mathrm{~mA}$ (Internal power supplied from the main unit)
Digital circuits	5V DC 30 mA (Internal power supplied from the main unit)
Isolation	Photo-coupler isolation between analog and digital circuits. (No isolation between analog channels.)
Number of occupied I/O points	The blocks occupies either 8 input or output points. (Can be either inputs or outputs)

5.3 Defining gain and offset

Item	Voltage output	Current output
Range of analog output	At shipping, the unit is adjusted to a digital range of 0 to 4000 for an analog voltage output of 0 to 10 V DC. When using an FX2N-2DA for current or differing voltage output except 0 to 10 V DC, it is necessary to adjust the offset and gain.	
	0 to 10 V DC, 0 to 5 V DC (External load resistance 2K to $1 \mathrm{M} \Omega$)	4 to 20 mA (External load resistance 400Ω or less)
Digital input	12bit	
Resolution	$2.5 \mathrm{mV}: 10 \mathrm{~V} / 4000$ (At shipment) Change depending on the output characteristic.	$4 \mu \mathrm{~A}:(20-4) \mathrm{A} / 4000$ Change depending on the output characteristic.
Integrated accuracy	$\pm 0.1 \mathrm{~V}$	$\pm 0.16 \mathrm{~mA}$
Processing time	$4 \mathrm{~ms} / 1$ channel (synchronized to be sequence program)	
Output characteristics	$\left.\begin{array}{l}\text { Analog value :0 to } 10 \mathrm{~V} \\ \text { Digital value :0 to } 4000\end{array}\right] \begin{aligned} & \text { at } \\ & \text { shipment }\end{aligned}$	Analog value :4 to 20 mA Digital value :0 to 4000
	If a digital source data of greater than 12 bits is used, only the lower 12 bits will be valid. Additional (upper) bits will be ignored Use a digital value within the range from 0 to 4095. The output characteristic can be set to each of the two channels.	

6. ALLOCATION OF BUFFER MEMORY (BFM)

6.1 Buffer memory

BFM number	b15 to b8	b7 to b3	b2	b1	b0
\#0 to \#15	Reserved				
\#16	Reserved	Digital source data for output (8 bit)			
\#17			Lower data holding bit	CH1 D/A conversion beginning	CH2 D/A conversion beginning
\#18 or more	Reserved				

BFM\#16: The D/A conversion data of the channel specified with BFM\#17 (digital value) is written. The D/A data is written in binary in order of the lower 8bit and higher 4bit and divided into two portions.
BFM\#17: b0 \cdots The D/A conversion of CH 2 begins by changing of $1 \rightarrow 0$.
b1 \cdots The D/A conversion of CH1 begins by changing of $1 \rightarrow 0$.
b2 \cdots The lower eight bit data for the D/A conversion is held by changing of $1 \rightarrow 0$.

Write data in the above-mentioned buffer memory by "8. Program example".

7. ADJUSTMENT OF OFFSET AND GAIN

7.1 Change in output characteristic

At shipment, 0 to 4000 range is selected for 0 to 10 V DC output.
When using an FX2n-2DA for current or differing voltage output except 0 to 10 V DC, it is necessary to readjust the offset and gain.
The output characteristic can be set for each of the two channels.
Set analog values within the range specified in the table below when changing the output characteristic.
Range of output characteristic

	Voltage output	Current output
Analog value when digital value is 0	0 to 1 V	4 mA
Analog value when digital value is 4000	5 to 10 V	20 mA

Resolution changes depending on the set value when the output characteristic changes accordingly. Example: Resolution becomes (5-0V)/4000=1.25mV at voltage output 0 to $5 \mathrm{~V} / 0$ to 4000 .
Integrated accuracy does not change. (Voltage output: $\pm 0.1 \mathrm{~V}$, Current output: $\pm 0.16 \mathrm{~mA}$)

The adjustment of the offset and gain values sets a digital equivalent to the analog data.
(The "POT" requires 18 revolutions to move between MIN and MAX setting.)

*1 The analog value increases if the volume is turned clockwise.

7.1.1 Adjustment of gain

The gain value can be set to an arbitrary digital value.
However, using the maximum of 12bit resolution provides the user with a full scale analog value.

Voltage output

7.1.2 Adjustment of offset

The offset value in the case of voltage output is 0 V . The offset value in the case of current output is 4 mA . However, the offset value can be minutely adjusted if necessary. Set the following when minute adjustments are necessary.

$$
\begin{aligned}
& \text { Voltage output } \\
& \text { characteristic (} 0 \text { to } 10 \mathrm{~V} \text {) } \\
& \text { at shipment }
\end{aligned}
$$

> Voltage output characteristic (0 to 5 V)

Voltage output
characteristic (4 to 20 mA)

For instance, when a digital range of 0 to 4000 is used with the analog range of 0 to 10 V , a digital value of 40 is equal to an analog output of $100 \mathrm{mV},(40 \times 10 \mathrm{~V} / 4000$ digital points). When a digital range of 0 to 4000 is used with the analog range of 4 to 20 mA , a digital value of 0 is equal to an analog output of 4 mA .

1) Adjust the offset and gain respectively for CH 1 and CH 2 .
2) Repeat offset and gain adjustments until a stable value is obtained.
3) Adjust the gain before the offset.

8. PROGRAM EXAMPLE

The following program examples (8.1 and 8.2) are formula circuits.
The device numbers that have been underlined can be assigned by the user during programming.

8.1 At connection to FXoN series PLC

a) Digital data (D100) is progressed to supplementary relay (M100-M115).
b b)The lower 8 bit data is moved.
c c) The lower 8 bit data is written to the FX2n-2DA.
d d)The lower 8 bit data is held.
e)The higher 4 bit data is moved.
f) The higher 4 bit data is written to the

FX2N-2DA.
g) The D/A conversion of CH 1 is executed.
h) Digital data (D101) is progressed to supplementary relay (M100-M115).
i) The lower 8 bit data is moved.
j) The lower 8 bit data is written to the FX2N-2DA.
k) The lower 8 bit data is held.
' l) The higher 4 bit data is moved.
m)The higher 4 bit data is written to the FX2N-2DA.
n)The D / A conversion of CH 2 is executed.

Digital to analog conversion execution input of CH 1 :X000
Digital to analog conversion execution input of CH 2 :X001
At the same time X000 and X001 can be turned ON.
D/A output data CH1:D100 (Replace with auxiliary relay M100 to M131. Assign these numbers only once) D/A output data CH2:D101 (Replace with auxiliary relay M100 to M131. Assign these numbers only once)

Processing time: $4 \mathrm{~ms} / 1$ channel
(Time until FX2N-2DA outputs analog value after turning on X000 and X001.)

8.2 At connection to FX1N, FX2N or FX2N series PLC

Digital to analog conversion execution input of CH1 :X000
Digital to analog conversion execution input of CH 2 :X001
At the same time X000 and X001 can be turned ON.
D/A output data CH1:D100 (Replace with auxiliary relay M100 to M115. Assign these numbers only once)
D/A output data CH 2 :D101 (Replace with auxiliary relay M100 to M115. Assign these numbers only once)

Processing time:4ms / 1 channel
(Time until FX2N-2DA outputs analog value after turning on X000 and X001.)

8.3 Connection to FX2N (V3.00 or later) or FX2N (V3.00 or later) series PLC

Please use FNC 177 (WR3A).
Refer to FX series Programming Manual II.

9. NOTES IN DRIVE

1) Confirm whether the output wiring of $\mathrm{FX} 2 \mathrm{~N}-2 \mathrm{DA}$ and the connection of the extension cable are correctly done.
2) Confirm whether the "4. Connection with programmable controller" condition is satisfied.
3) When shipped from the factory, the output characteristic is adjusted to 0 to 10 V DC. If a different output characteristic is desired, please adjust as required.
4) The mixture use for the voltage output/the current output is possible.

10. ERROR CHECK

Confirm the following items when it seems that the FX2N-2DA does not operate correctly.

1) Confirm the state of POWER LED.

Lit :The extension cable is correctly connected.
Turn off or blinks :Confirm the proper connection of the extension cable.
2) Confirm external wiring per section " 3 . WIRING"
3) Confirm whether the load resistance of the connected equipment corresponds to the specification of the FX2N-2DA.
4) Confirm the Voltage and Current Output values with a voltmeter and an ammeter. Confirm the digital to analog conversion from the output characteristic. Readjust the offset and gain per " 7. ADJUSTMENT OF OFFSET AND GAIN". The output characteristic when shipped from the factory is 0 to 10 V DC.

Guidelines for the safety of the user and protection of the FX2N-2DA SPECIAL FUNCTION BLOCK

- This manual has been written to be used by trained and competent personnel. This is defined by the European directives for machinery, low voltage and EMC.
- If in doubt at any stage during the installation of the FX2N-2DA always consult a professional electrical engineer who is qualified and trained to the local and national standards. If in doubt about the operation or use of the FX2N-2DA please consult the nearest Mitsubishi Electric distributor.
- Under no circumstances will Mitsubishi Electric be liable or responsible for any consequential damage that may arise as a result of the installation or use of this equipment.
- All examples and diagrams shown in this manual are intended only as an aid to understanding the text, not to guarantee operation. Mitsubishi Electric will accept no responsibility for actual use of the product based on these illustrative examples.
- Owing to the very great variety in possible application of this equipment, you must satisfy yourself as to its suitability for your specific application.

Manual number : JY992D74901
Manual revision: D
Date : SEPTEMBER 2002

\&MITSUBISH

Changes for the Better

WMELSEGbTV FX2N-2DA SPECIAL FUNCTIONBLOCK

USN-2DA SPECIAL FUNCTIONBLOCK USER GUIDE

$\square \rightarrow$

JY992D74901D

This manual contains text, diagrams and explanations which will guide the reader in the correct installation and operation of the FX2N-2DA special function block and should be read and understood before attempting to install or use the unit.
in FX SERIES PROGRAMMING MANUAL(II), FXON/FXIN/FX2N FX2NC SERIES HARDWARE MANUAL of each PLC.

1. INTRODUCTION

The FX2N-2DA type analog output block (hereafter referred to as the FX2N-2DA) is used to convert a digital value of 12 bits into an analog output of two points (voltage and current output), and to forward the values to the Programmable Controlier (hereatter referred to as a PLC).

1) The analog output is selected from the voltage or current output by the

The analog output is selected from the voltage or current output by the method of connecting wires.
2)
(A mixture of voltage/current output is possible.)
3) Resolution is $2.5 \mathrm{mV}(0$ to 10 VCC) and $4 \mu \mathrm{~A}(4$ to 20 mA).
4) The digital to analog conversion characteristics can be adjusted.
5) The block occupies $8 \mathrm{l} / \mathrm{O}$ points which can be allocated from either the inputs or outputs.
6) The data transfer with the PLC uses the FROM/TO instructions.

2. EXTERNAL DIMENSIONS AND PARTS

3. WIRING

*1 Connect a 0.1 to $0.47 \mu \mathrm{H} 25 \mathrm{~V}$ DC capacitor respective to position *1 when there is voltage ripple in the voltage output or there is a lot of noise.
*2 For voltage output please short circuit IOUT and COM as shown in the diagram.
*3 Channel number enter O

4. CONNECTION WITH PROGRAMMABLE CONTROLLER

1) The FX2N-2DA and main unit are connected by a cable on the right of the main unit.
2) Up to $4 \mathrm{FX}_{2 \mathrm{~N}}-2 \mathrm{DA}$ units can connect to the FX ON series PLC, up to 5 for $\mathrm{FX} \mathrm{X}_{1 N}$, up to 8 for FX 2 N or, up to

N: Main unit and for undermentioned special function blocks $\leq 190 \mathrm{~mA}$
FX2N: Main unit and powered extension units of $/ / \mathbf{O} 48$ points or more. Consumption current available for undermentioned special function blocks $\leq 300 \mathrm{~mA}$
FX2nc: Up to 4 undermentioned special function blocks can be connected regardless of the system I/O FXon/in: Main unit and powered extension units. Up to 2 undermentioned special function blocks can be connected regardless of the system I/O.

	FX2N-2DA	FX2N-2AD	FXON-3A
Consumption current of 24V DC for one unit	85 mA	50 mA	90 mA

3) The blocks occupies 8 I/O points (the 8 points can be allocated from either inputs or outputs).
4) $F X_{2 N}-2 \mathrm{DA}$ consumes $5 \mathrm{~V} D C 30 \mathrm{~mA}$.
cial function blocks connected to either an $\mathrm{FX}_{2 \mathrm{~N}, \mathrm{FX} \text { _Nc }}$ main unit or an FX2N extension unit must not exceed the 5 V source capacity of the system.

5. SPECIFICATIONS

5.1 Environmental specification

Item	Content
Directric Withstand voltage	500V AC 1 min (between analog output terminals and case)

Environmental speciications other than the above are the same as the main unit of the
Programmable Controller. (Refer to the Hardware manual of the Programmable controller) 5.2 Power supply specification and others

Item	Content
Analog circuits	$24 \mathrm{~V} \mathrm{DC} \pm 10 \%$ 85mA (Internal power supplied from the main unit)
Digital circuits	$5 \mathrm{~V} \mathrm{DC} \mathrm{30mA} \mathrm{(Internal} \mathrm{power} \mathrm{supplied} \mathrm{from} \mathrm{the} \mathrm{main} \mathrm{unit)}$
Isolation	Photo-coupler isolation between analog and digital circuits. (No isolation between analog channels.)
Number of occupied /O points	The blocks occupeies either 8 input or output points. (Can be either inputs or outputs)

5.3 Defining gain and offset

If a digital source data of greater than 12 bits is used, only the lower 12 bits will be valid. Additional (upper) bits will be ignored
Use a digital value within the range from 0 to 4095 The output characteristic can be set to each of the two channels.

6. ALLOCATION OF BUFFER MEMORY (BFM)

$\begin{gathered} \hline \text { BFM } \\ \text { number } \end{gathered}$	b15 to b8	b7 to b3	b2	b1	b0
\#0 to \#15	Reserved				
\#16	Reserved	Digital source data for output (8 bit)			
\#17	Reserved		Lower data holding bit	CH1 D/A conversion beginning	CH2 D/A conversion beginning
\#18 or more			Reserved		

BFM\#16: The D/A conversion data of the channel specified with BFM\#17 (digital value) is written. The D/A data is written in binary in order of the lower 8bit and higher 4bit and divided into two portions.
BFM\#17: bo…The D/A conversion of CH 2 begins by changing of $1 \rightarrow 0$
b1 \ldots The D / A conversion of CH1 begins by changing of $1 \rightarrow 0$.
b2 \cdots The lower eight bit data for the D / A conversion is held by changing of $1 \rightarrow 0$
Write data in the above-mentioned buffer memory by "8. Program example".

7. ADJUSTMENT OF OFFSET AND GAIN

7.1 Change in output characteristic

At shipment, 0 to 4000 range is selected for 0 to 10 V DC output.
When using an FX2N-2DA for currnt differing voltage output except 0 to 10 V DC, it is necessary to
The output characteristic can be set for each of the two channels.
Set analog values within the range specified in the table below when changing the output characteristic. Range of output characteristic

	Voltage output	Current output
Analog value when digital value is 0	0 to 1 V	4 mA
Analog value when digital value is 4000	5 to 10 V	20 mA

Resolution changes depending on the set value when the output characteristic changes accordingly.
Example: Resolution becomes $(5-0 V) / 4000=125 \mathrm{mV}$ at volp Example: Resolution becomes ($5-0 \mathrm{~V}) / 4000=1.25 \mathrm{mV}$ at voitage output 0 to $5 \mathrm{~V} / 0$ to 4000

The adjustment of the offset and gain values sets a digital equivalent to the analog data. (The "POT" requite 18 revition to move between MIN and MAX setting,

 Volume *1

* 1 The analog value increases if the volume is turned clockwise

7.1.1 Adjustment of gain

The gain value can be set to an arbitrary digital value.
However, using the maximum of 12 bit resolution provides the user with a full scale analog value.

7.1.2 Adjustment of offset

The offset value in the case of voltage output is 0 V . The offset value in the case of current output is 4 mA However, the offset value can be minutely adjusted if necessary. Set the following when minut adjustments are necessary.

For instance, when a digital range of 0 to 4000 is used with the analog range of 0 to 10 V , a digital value of 40 is equal to an analog output of $100 \mathrm{mV},(40 \times 10 \mathrm{~V} / 4000$ digital points). When a digital range of 0 to 400 is used with the analog range of 4 to 20 mA , a digital value of 0 is equal to an analog output of 4 mA .

1) Adjust the offset and gain respectively for CH 1 and CH 2 .
2) Repeat offset and gain adjustments until a stable value is obtained
3) Adjust the gain before the offset.

8. PROGRAM EXAMPLE

The following program examples (8.1 and 8.2) are formula circuits.
The device numbers that have been underined can be assigned by the user during programming.
8.1 At connection to FXON series PLC 8.1 At connection to FXon series PLC

Digital to analog conversion execution input of $\mathrm{CH} 1 \cdot \mathrm{x} 000$
Digital to analog conversion execution input of $\mathrm{CH} 2: \times 001$ At the same time XOOO and X000 can be turred ON.
D/A output data CH1:D100 (Replace with auxiliary relay M100 to M131. Assign these numbers only once) D/A output data CH2:D101 (Replace with auxiliary relay M100 to M131. Assign these numbers only once) Processing time: $4 \mathrm{~ms} / 1$ channel

a) Digital data (D100) is progressed to supplementary relay (M100-M1 15). b) The lower 8 bit data is written to the The lower
The lower 8 bit data is held. d) The higher 4 bit data is written to
e) The D/A con
) The D/A conversion of CH 1 is
executed. (D101) is progressed to f) Digital data (D101) is progressed to
supplementary relay (M100-M115). g) The lower 8 bit data is written to the FX2N-2DA.
h) The lower 8 bit data is held. i) The higher 4 bit data is written to
the FX X2N-2DA. the $\mathrm{YX}_{2 \mathrm{~N}}-2 \mathrm{DA}$.
j) The D / A conversion of CH 2 is
executed.

Digital to analog conversion execution input of $\mathrm{CH} 1: \times 000$
Digital to analog conversion execution input of CH2 : X001
At the same time X000 and X001 can be turned ON
At the same time X000 and X001 can be turned ON
A output data CH1:D100 (Replace with auxiliary relay M100 to M115. Assign these numbers only once) once)
Processing time:4ms / 1 channel
(Time until $\mathrm{FX} 2 \mathrm{~N}-2 \mathrm{DA}$ outputs analog value after turning on X 000 and X 001 .)
(${ }^{2}$.
8.3 Connection to FX2N (V3.00 or later) or $\mathrm{FX}_{2 \mathrm{~N}}$ (V3.00 or later) series PLC

Please use FNC 177 (WR3A).

9. NOTES IN DRIVE

1) Confirm whether the output wiring of $\mathrm{FX} 2 \mathrm{~N}-2 \mathrm{DA}$ and the connection of the extension cable are correctly done.
2) Confirm whether the "4. Connection with programmable controller" condition is satisfied.
3) When shipped from the factory, the output characteristic is adjusted to 0 to 10 V DC. If a different output characteristic is desired, please adjust as required.
) The mixture use for the voltage output/the current output is possible.

10. ERROR CHECK

Confirm the following items when it seems that the FX2N-2DA does not operate correctly.

1) Confirm the state of POWER LED.

Lit :The extension cable is correctly connected
Turn off or bliks Confirm the proper connection the extension cable.
2) Confirm external wiring per section " 3 . WIRING"
3) Confirm whether the load resistance of the connected equipment corresponds to the specification of the $\mathrm{FX} 2 \mathrm{~N}-2 \mathrm{D}$
4) Confirm the Voltage and Current Output values with a voltmeter and an ammeter. Confirm the digital to analog conversion from the output characteristic. Readjust the offset and gain per " 7 .
ADJUSTMENT OF OFFSET AND GAIN". The output characteristic when shipped from the factory is 0 to 10 V D.

Guidelines for the safety of the user and protection of the FX2N-2DA SPECIAL FUNCTION BLOCK

This manual has been written to be used by trained and competent personnel. This is defined by the European directives for machinery, low voltage and EMC
If in doubt at any stage during the installation of the FX 2 N -2DA always consult a professiona electrical engineer who is qualified and trained to the local and national standards. If in doubi about the operation or use of the X2N-2DA please consult he nearest Mitsubishi Electric distributo
Under no circumstances will Mitsubishi Electric be liable or responsible for any consequentia Uamer no circumstances will Mitsubishi Electric be tiable or responsible as ar result of the installation or use of this equipment.
All examples and diagrams shown in this manual are intended only as an aid to responsibility for actual use of the product based on these illustrative examples.
Owing to the very great variety in possible application of this equipment, you must satisfy yourself as to its suitability for your specific application.

