
MELSEC iQ-R Programming Manual
(Program Design)

SAFETY PRECAUTIONS
(Read these precautions before using this product.)

Before using MELSEC iQ-R series programmable controllers, please read the manuals for the product and the relevant

manuals introduced in those manuals carefully, and pay full attention to safety to handle the product correctly.

Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

CONDITIONS OF USE FOR THE PRODUCT
(1) Mitsubishi programmable controller ("the PRODUCT") shall be used in conditions;

i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident;
and
ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the
case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.
MITSUBISHI SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL
RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY
INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE
OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR
WARNING CONTAINED IN MITSUBISHI'S USER, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL
BULLETINS AND GUIDELINES FOR the PRODUCT.
("Prohibited Application")
Prohibited Applications include, but not limited to, the use of the PRODUCT in;
• Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the

public could be affected if any problem or fault occurs in the PRODUCT.
• Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality

assurance system is required by the Purchaser or End User.
• Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator,

Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and
Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other
applications where there is a significant risk of injury to the public or property.

Notwithstanding the above, restrictions Mitsubishi may in its sole discretion, authorize use of the PRODUCT in one or
more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific
applications agreed to by Mitsubishi and provided further that no special quality assurance or fail-safe, redundant or
other safety features which exceed the general specifications of the PRODUCTs are required. For details, please
contact the Mitsubishi representative in your region.
1

2

 • For Safety CPUs

(1) Although MELCO has obtained the certification for Product's compliance to the international safety standards
IEC61508, EN954-1/ISO13849-1 from TUV Rheinland, this fact does not guarantee that Product will be free from any
malfunction or failure. The user of this Product shall comply with any and all applicable safety standard, regulation or
law and take appropriate safety measures for the system in which the Product is installed or used and shall take the
second or third safety measures other than the Product. MELCO is not liable for damages that could have been
prevented by compliance with any applicable safety standard, regulation or law.

(2) MELCO prohibits the use of Products with or in any application involving, and MELCO shall not be liable for a default, a
liability for defect warranty, a quality assurance, negligence or other tort and a product liability in these applications.
(a) power plants,
(b) trains, railway systems, airplanes, airline operations, other transportation systems,
(c) hospitals, medical care, dialysis and life support facilities or equipment,
(d) amusement equipments,
(e) incineration and fuel devices,
(f) handling of nuclear or hazardous materials or chemicals,
(g) mining and drilling,
(h) and other applications where the level of risk to human life, health or property are elevated.

INTRODUCTION
Thank you for purchasing the Mitsubishi MELSEC iQ-R series programmable controllers.

This manual describes the program structures and data required for programming.

Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the

functions and performance of the MELSEC iQ-R series programmable controller to handle the product correctly.

When applying the program examples provided in this manual to an actual system, ensure the applicability and confirm that it

will not cause system control problems.

Please make sure that the end users read this manual.

Most of the information in this manual is described using labels. Devices can be used in the same way as

labels.
3

4

CONTENTS
SAFETY PRECAUTIONS .1

CONDITIONS OF USE FOR THE PRODUCT .1

INTRODUCTION. .3

RELEVANT MANUALS .6

TERMS .7

CHAPTER 1 OVERVIEW 8

CHAPTER 2 PROGRAM CONFIGURATION 10

2.1 Program Blocks . 11

CHAPTER 3 PROGRAM ORGANIZATION UNITS 12

3.1 Functions (FUN). 13

3.2 Function Blocks (FB) . 18

3.3 Precautions . 28

3.4 When a Safety Program Is Used . 31

Safety functions (Safety FUN) . 31

Safety function blocks (Safety FB) . 32

CHAPTER 4 LABELS 33

4.1 Label Types . 33

4.2 Classes. 34

4.3 Data Types . 35

4.4 Arrays . 38

4.5 Structures. 41

4.6 Constants . 43

4.7 Precautions . 44

4.8 When a Safety Program Is Used . 46

Safety label types . 46

Classes . 47

Data types . 48

Structures . 48

CHAPTER 5 LADDER DIAGRAM 49

5.1 Configuration. 49

Ladder symbols . 49

Program execution order . 50

5.2 Inline ST . 51

5.3 Statements and Notes . 53

CHAPTER 6 STRUCTURED TEXT LANGUAGE 54

6.1 Configuration. 55

Delimiters. 56

Operators. 56

Control statements . 57

Constants . 68

Labels and devices . 69

Comments . 70

C
O

N
T

E
N

T
S

CHAPTER 7 FBD/LD 71

7.1 Configuration. 71

Program elements . 72

Worksheet . 78

Constant . 78

Labels and devices . 78

7.2 Program Execution Order. 80

Execution order of program elements . 80

CHAPTER 8 SFC PROGRAM 81

8.1 Specifications . 83

8.2 Structure. 84

Block . 85

Step . 86

Action. 98

Transition. 101

8.3 SFC Control Instructions . 109

8.4 SFC Information Devices . 111

8.5 SFC Setting . 119

CPU parameter . 119

SFC block setting . 126

8.6 SFC Program Execution Order. 127

Whole program processing . 127

SFC program processing sequence . 129

8.7 SFC Program Execution . 133

Starting and stopping the SFC program . 133

Starting and ending a block . 134

Pausing and restarting a block . 135

Activating and deactivating a step . 136

Behavior when an active step is activated. 137

Operation when a program is modified . 138

Checking SFC program operation . 139

INDEX 140

REVISIONS. .142

WARRANTY .143

TRADEMARKS .144
5

6

RELEVANT MANUALS

e-Manual refers to the Mitsubishi FA electronic book manuals that can be browsed using a dedicated tool.

e-Manual has the following features:

 • Required information can be cross-searched in multiple manuals.

 • Other manuals can be accessed from the links in the manual.

 • The hardware specifications of each part can be found from the product figures.

 • Pages that users often browse can be bookmarked.

Manual name [manual number] Description Available form

MELSEC iQ-R Programming Manual (Program Design)

[SH-081265ENG] (this manual)

Program specifications (ladder, ST, FBD/LD, and SFC

programs) and labels

e-Manual

EPUB

PDF

MELSEC iQ-R Programming Manual (Instructions, Standard

Functions/Function Blocks)

[SH-081266ENG]

Instructions for the CPU module, dedicated instructions for

the intelligent function modules, and standard functions/

function blocks

e-Manual

EPUB

PDF

GX Works3 Operating Manual

[SH-081215ENG]

System configuration, parameter settings, and online

operations of GX Works3

e-Manual

EPUB

PDF

TERMS
Unless otherwise specified, this manual uses the following terms.

The following terms are used to explain a safety programmable controller system using the Safety CPU.

Term Description

Buffer memory Memory in an intelligent function module for storing data such as setting values and monitored values.

Buffer memory in a CPU module stores setting values and monitored values of the Ethernet function and data used for

data communications among the CPU modules in a multiple CPU system.

CPU module A generic term for the MELSEC iQ-R series CPU modules

Device A device (X, Y, M, D, or others) in a CPU module

Engineering tool The product name of the software package for the MELSEC programmable controllers

GX Works3 The product name of the software package, SWnDNC-GXW3, for the MELSEC programmable controllers (The 'n'

represents a version.)

I/O module A generic term for the input module, output module, I/O combined module, and interrupt module

Intelligent function module A module that has functions other than input and output, such as an A/D converter module and D/A converter module

Label A label that represents a device in a given character string

Module label A label that represents one of memory areas (I/O signals and buffer memory areas) specific to each module in a given

character string. For the module used, the engineering tool automatically generates this label, which can be used as a

global label.

Multiple CPU system A system where two to four CPU modules separately control I/O modules and intelligent function modules

Network module A generic term for the following modules:

• Ethernet interface module

• CC-Link IE Controller Network module

• Module on CC-Link IE Field Network

• MELSECNET/H network module

• MELSECNET/10 network module

• RnENCPU (network part)

Operand A generic term for the devices, such as source data (s), destination data (d), number of devices (n), and others, used

as parts to configure instructions and functions

POU A unit that configures a program. Units are categorized and provided in accordance with functions. Use of POUs

enables dividing the lower-layer processing in a hierarchical program into some units in accordance with processing or

functions, and creating programs for each unit.

Predefined protocol support function A function of GX Works3.

This function sets protocols appropriate to each external device and reads/writes protocol setting data.

Standard/safety shared label A label that can be used in both standard programs and safety programs. This label is used to pass data between

safety programs and standard programs.

Term Description

Safety communications Communication service that performs send/receive processing in the safety layer of the safety

communication protocol

Safety control Machine control by safety programs and safety data communications. When an error occurs, the

machine in operation is securely stopped.

Safety device A device that can be used in safety programs

Safety program A program that performs safety control

Standard communications Communications other than safety communications, such as cyclic transmission and transient

transmission of CC-Link IE Field Network

Standard control Machine control by standard programs and standard data communications. Programmable controllers

other than the safety programmable controller perform only standard control. (This term is used to

distinguish from safety control.)

Standard CPU A generic term for MELSEC iQ-R series CPU modules (other than Safety CPU) that perform standard

control (This term is used to distinguish from the Safety CPU.)

Standard device A device (X, Y, M, D, or others) in a CPU module. (Safety devices are excluded.) This device can be

used only in standard programs. (This term is used to distinguish from a safety device.)

Standard program A program that performs sequence control. (Safety programs are excluded.) (This term is used to

distinguish from a safety program.)
7

8

1 OVERVIEW

This manual describes program configurations, contents, and coding methods required for programming.

For information on creating, editing, and monitoring programs using an engineering tool, refer to the following.

 GX Works3 Operating Manual

Programming languages
With the MELSEC iQ-R series, an optimal programming language can be selected and used according to the application.

■Ladder diagram (Ladder)

For details, refer to the following.

Page 49 LADDER DIAGRAM

■Structured text language (ST)

For details, refer to the following.

Page 54 STRUCTURED TEXT LANGUAGE

Programming language Description

Ladder diagram (Ladder) A graphic language which describes ladders consisting of contacts and coils.

This language is used to describe logical ladders using symbolized contacts and coils to enable

easy-to-understand sequence control.

Structured text language (ST) A textual language used to describe programs using statements (such as IF) and operators.

Compared with the ladder diagram, this language can describe hard-to-describe operation

processing concisely and legibly, and therefore is suitable for programming complicated

arithmetic operations and comparison operations. Also, as with C, ST language can describe

syntax control such as selective branches with conditional statements and repetitions with

iteration statements, and thus can describe easy-to-understand, concise programs.

Function block diagram/ladder diagram (FBD/LD) A graphic language which describes programs by connecting blocks that perform predefined

processing, variable elements, and constant elements along the flow of data and signals.

This language facilitates programming of DDC (direct digital control) processing which is difficult

to describe in ladder diagram, and improves the productivity of programs.

Sequential function chart (SFC program) SFC is a program description format in which a sequence of control operations is split into a

series of steps to enable a clear expression of each program execution sequence and execution

conditions.
1 OVERVIEW

1

■Function block diagram/ladder diagram (FBD/LD)

For details, refer to the following.

Page 71 FBD/LD

■SFC program

For details, refer to the following.

Page 81 SFC PROGRAM

 • Programming in ladder is suitable for users who have knowledge and experience of sequence control and

logical ladders. Programming in ST is suitable for users who have knowledge and experience of C

programming. Programming in FBD/LD is suitable for users who perform process control. SFC program is

suitable for creating program blocks for each actual control of machines and controlling the transition of

each operation.

 • Using labels in programs can improve readability of programs, and make it easy to immigrate programs to a

system having a different module configuration.
1 OVERVIEW
 9

10
2 PROGRAM CONFIGURATION

Using the engineering tool, multiple programs and program organization units (POUs) can be created.

Programs and POUs can be divided according to processing.

This chapter describes the program configuration.

For POUs, refer to the following.

Page 12 PROGRAM ORGANIZATION UNITS

Project
A project is a group of data (such as programs and parameters) to be executed in a CPU module.

Only one project can be written to a single CPU module.

At least one program file needs to be created in a project.

Program file
A program file is a group of programs and POUs.

A program file consists of at least one program block.

The following operations are performed in units of program file: changing the program execution type from the fixed scan

execution type to the standby type and writing data to the CPU module.

�

Project

Program file 2

Program block

Program file 1

Program block

Program block

POU

Function block

Function block

Function

Function

Function
2 PROGRAM CONFIGURATION

2

2.1 Program Blocks
A program block is a unit for making up a program.

Multiple program blocks can be created in a program file and executed in the order specified in the program file setting. If the

order is not specified in the program file setting, the program blocks are executed in ascending order of their names.

By separating program blocks for individual functions and processing, the order of programs can be changed easily and

programs can be exchanged easily.

The program of a program block is stored in a program file for each registration destination program.

Creating a main routine program, subroutine program, and interrupt program separately in individual program blocks enables

creation of easy-to-understand programs. *1

*1 Subroutine programs and interrupt programs cannot be created in safety programs. Subroutine programs cannot be executed from
safety programs.

For details on the main routine program, subroutine program, and interrupt program, refer to the following.

 MELSEC iQ-R CPU Module User's Manual (Application)

 • Create a subroutine program and interrupt program after the FEND instruction of the main routine program. Any program

after the FEND instruction is not executed as a main routine program. For example, when the FEND instruction is used at

the end of the second program block, the third program block and after runs as a subroutine program or interrupt program.

 • To create an easy-to-understand program, use a pair of instructions, such as the FOR and NEXT instructions or the MC

and MCR instructions, within a single program block.

 • A simple program can be executed in the CPU module simply by writing the main routine in one program block.

Program type Description

Main routine program A program beginning with step 0 and ending with the FEND instruction

Subroutine program A program beginning with a pointer (P) and ending with the RET instruction.

This program is executed only when it is called by a subroutine call instruction (such as the CALL and ECALL

instructions).

Interrupt program A program beginning with an interrupt pointer (I) and ending with the IRET instruction.

When an interrupt factor occurs, the interrupt program corresponding to the interrupt pointer number is executed.

Program file
Program block 1

Program block 2
2 PROGRAM CONFIGURATION
2.1 Program Blocks 11

12
3 PROGRAM ORGANIZATION UNITS

There are two types of program organization units (POUs).

 • Function

 • Function block

Processing can be described in the programming language (ladder diagram, structured text language, or FBD/LD) that suits

the control performed in a function or function block.

A POU is called and executed by program blocks.

A structured program is a program created by components. Processes in lower levels of hierarchical

sequence program are divided into several components according to their processing information and

functions.

Each component of a program is specified to have a high degree of independence for easy addition and

replacement.

The following are the examples of processing that would be ideal to be structured.

 • Processing which is used repeatedly in a program

 • Processing which can be separated as one function

This chapter describes two types of POUs using labels.

Devices can also be used in the program of a function or function block. For details on devices, refer to the following.

 MELSEC iQ-R CPU Module User's Manual (Application)

Project

Program file

POU folder

POU

Function block

POU

Program block

POU

POU

Function

Used
3 PROGRAM ORGANIZATION UNITS

3

3.1 Functions (FUN)
A function is a POU called and executed by program blocks, function blocks, and other functions.

After the processing completes, a function passes a value to the calling source. This value is called a return value.

A function always outputs the same return value, as the processing result, for the same input.

By defining simple, independent algorithms that are frequently used, functions can be reused efficiently.

Input variables and output variables
Input and output variables can be defined in functions. Output data which is different from the return value can be assigned to

the output variable.

For the classes in which input and output variables can be set, refer to the following.

Page 34 Classes

Variables defined in the function are overwritten every time the function is called.

To hold the data in the variables, create a program by using function blocks or so that the data in the output

variable is saved in another variable.

Ladder program FBD/LD program

The return value of the function is not displayed.

(1) Function name

(2) Input variable

(3) Output variable

FUN

FB or FUNFUN

Program
blockFunction

Function block
or
function

Program
block

(1)

(2)

(3)

(1)

(2)
(3)
3 PROGRAM ORGANIZATION UNITS
3.1 Functions (FUN) 13

14
EN and ENO
EN (enable input) and ENO (enable output) can be appended to a function to control execution processing.

 • Set a boolean variable used as an execution condition of a function to EN.

 • A function with EN is executed only when the execution condition of EN is TRUE.

 • Set a boolean variable used to output a function execution result to ENO.

For the boolean type, refer to the following.

Page 35 Data Types

The following table lists the ENO states and operation results according to the EN states.

 • Setting an output label to ENO is not always required for the program written in ladder or FBD/LD.

 • When EN/ENO is used in a standard function, the function with EN is represented by "function-name_E".

Creating programs
The program of a function can be created by using the engineering tool.

Navigation window "FB/FUN" Right-click "Add New Data"

The created program is stored in the FB/FUN file.

[CPU Parameter] "Program Setting" "FB/FUN File Setting"

Up to 64 programs can be stored in one FB/FUN file.

For details on program creation, refer to the following.

■Applicable devices and labels
The following table lists the devices and labels that can be used in function programs.

: Applicable, : Applicable only in instructions (Cannot be used to indicate the program step.), : Not applicable

*1 The following data types cannot be used.
Timer, retentive timer, counter, long timer, long retentive timer, and long counter

EN ENO Operation result

TRUE (executed) TRUE Operation result output value

FALSE (not executed) FALSE Undefined value

Item Reference

How to create function programs GX Works3 Operating Manual

Number of FB/FUN files that can be written to a CPU module MELSEC iQ-R CPU Module User's Manual (Startup)

Type of device/label Availability

Label (other than the pointer type) Global label

Local label *1

Label (pointer type) Pointer type global label

Pointer type local label

Device Global device

Local device

Pointer Global pointer

Local pointer
3 PROGRAM ORGANIZATION UNITS
3.1 Functions (FUN)

3

Operation overview
The program of a function is stored in the FB/FUN file and called by the calling source program when executed.

Up to 32 subroutine type function blocks, macro type function blocks, and functions in total can be nested.

Labels defined by a function
The labels defined by a function are assigned in the temporary areas of the storage-target memory during execution of the

function, and the areas are freed after the processing completes.

The following figure shows the label assignments while the above functions are being executed.

For the types of labels can be defined by a function, refer to the following.

Page 34 Classes

The label to be defined by a function must be initialized by a program before the first access because the label

value will be undefined.

� �
�

��

�

	

FUN1

FUN2

FUN3

(Program file)
Main program

(FB file)
FUN1 program

(FB file)
FUN2 program

(FB file)
FUN3 program

Execution
flow

� � � �

� � 	

Label area of FUN3

Main program being
executed

FUN1 being executed
(before FUN3 is called)

FUN3 being executed

Label area of FUN1 Label area of FUN1 Label area of FUN1

FUN1 being executed
(after FUN3 is executed)

Main program being
executed

FUN2 being executed

Label area of FUN2

Main program being
executed
3 PROGRAM ORGANIZATION UNITS
3.1 Functions (FUN) 15

16
Number of steps
To call a function, the number of steps is required not only for the program itself but also for the processing that passes the

argument and return value and the processing that calls the program.

■Program
The number of steps required for a function program is the total number of instruction steps plus 22 steps. For the number of

steps required for each instruction, refer to the following.

 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

■Calling source
When calling a function, the calling source generates the processing that passes the argument and return value before and

after the call processing.

 • Passing the argument

The instruction used to pass the argument differs depending on the class and data type of the argument. The following table

summarizes the instructions that can be used to pass the argument.

 • Calling the program

A total of 26 steps are required to call the program of a function.

(1) Passing the argument

(2) Calling the FUN1 program

(3) Passing the return value

Argument
class

Data type Instruction used Number of steps

VAR_INPUT Bit LD+OUT

LD+MOVB

(Either of the instruction sets is used

depending on the combination of

programming language, function, and input

argument used.)

For the number of steps required for

each instruction, refer to the following.

 MELSEC iQ-R Programming

Manual (Instructions, Standard

Functions/Function Blocks)

Word [unsigned]/bit string [16 bits]

Double word [unsigned]/bit string [32 bits]

Word [signed]

Double word [signed]

LD+MOV

LD+DMOV

Single-precision real number LD+EMOV

Double-precision real number LD+EDMOV

Time LD+DMOV

String LD+$MOV

String [Unicode] LD+$MOV_WS

Array, Structure LD+BMOV

(1)

(2)

(3)

FUN1

FUNCall FUN1
FUN2

MOV D0 XX

D0
M0

D10
M10 Y40

Y20
M0

Y20

�

Program file

FUN1 program

FB file

The call-target program is
replaced with the call
instruction.

Program block 1
(displayed)

Calling the function
3 PROGRAM ORGANIZATION UNITS
3.1 Functions (FUN)

3

 • Passing the return value

The instruction and the number of steps used for passing the return value are identical to those for passing the argument.

 • EN/ENO

The following table lists the number of steps required for EN/ENO.

Argument
class

Data type Instruction used Number of steps

VAR_OUTPUT Same as for passing the argument Same as for passing the

argument

Same as for passing the argument

Item Number of steps

EN 3

ENO 2
3 PROGRAM ORGANIZATION UNITS
3.1 Functions (FUN) 17

18
3.2 Function Blocks (FB)
A function block is a POU called and executed by program blocks and other function blocks.

Unlike a function, a function block does not have a return value.

A function block can hold values in variables and thus can hold input states and processing results.

A function block uses the value it holds for the next processing and therefore it does not always output the same result even

with the same input value.

A function block needs to be instantiated to be used in programs.

Page 20 Instances

Ladder program FBD/LD program

(1) Instance name

(2) Function block name

(3) Output variable

(4) Input variable

FB

FBFB

Program
block

Function
block

Function
block

Program
block

(1)

(2)

(4)

(3)

(1)

(2)

(4)

(3)
3 PROGRAM ORGANIZATION UNITS
3.2 Function Blocks (FB)

3

Input variables, output variables, and input/output variables
Input variables, output variables, and input/output variables need to be defined in function blocks.

A function block can output multiple operation results. It can also be set not to output operation results.

For the classes in which input variables, output variables, and input/output variables can be set, refer to the following.

Page 34 Classes

Internal variables
Function blocks use internal variables. For each instance of a function block, labels are assigned to the different areas. Even

though the same label names are used, different states are held for each instance.

Ex.

The above function block starts counting when the input variables turn on and turns on the output variable when the current

value held in the internal variable reaches the set value. Even though the same function block is used, the output timings differ

because the instances A and B hold different states.

For the classes in which internal variables can be set, refer to the following.

Page 34 Classes

External variables
Function blocks can use external variables.

For the classes in which external variables can be set, refer to the following.

Page 34 Classes

(1) The operation result(s) is output.

(2) No operation result is output.

_S1 Q1

RESET

IN_Bool

iTim

lCnt

CD Q

CVLOAD

PV

InstanceInstance

Instance

SR SAMPLE_FB1

CTD

(1) (2)

bLabel3 bLabel6
bLabel1

uLabel2

bLabel10

uLabel12
bLabel13

cdLabel11

uLabel12

cdLabel11

bLabel4

uLabel5

bLabel10
bLabel13

Instance A

Function block

Instance B

Function block

Contact

Set value

Contact

Set value

Current value Current value

Counting-up Counting-up
3 PROGRAM ORGANIZATION UNITS
3.2 Function Blocks (FB) 19

20
Instances

■Instances
An instance is a local label assigned to realize a function block definition. Multiple instances can be created from one function

block definition.

The following figure shows the instance structure.

(Since the label area is secured in units of four words, three-word areas (padding size) are secured in the above example.)

■Creating instances
A function block needs to be instantiated to be used in programs.

By creating instances, a function block can be called and executed by programs and other function blocks.

Instances can also be defined as an array.

To create an instance, declare it as a label in a global label or local label of POU that uses function blocks. Same function

blocks can be instantiated with different names in a single POU.

(1) Same instances use the same internal variables.

(2) Different instances use different internal variables.

bLabel0

bLabel0

INCP wLabel0

wLabel0
BIT
WORD

bLabel0

wLabel0

FB1 definition

Ladder program (FB1)

Local label definition (FB1)
Label name Data type Latch

Reserved area (FB1)
Area Size
Local label area
Local latch label area

Local label area

Local latch label area

48 words
16 words

Creating instances
from FB1

FB1 instance structure

Padding size
3 words

Padding size
3 words

Reserved area
16 words

Total area size
20 words

Reserved area
48 words

Total area size
52 words

wLabel1

wLabel2

wLabel3

wLabel5

wLabel6

wLabel8

wLabel9wLabel7

wLabel1

wLabel2

wLabel3

wLabel5

wLabel6

wLabel8

wLabel9wLabel7

wLabel10

wLabel11

wLabel12

wLabel5

wLabel6

wLabel8

wLabel9wLabel7

wLabel4

wLabel4 wLabel13

(2)(1)

Instance A

Function block

Instance A

Function block

Instance B

Function block

Input variable 1

Input variable 2

Output variable

Input variable 3 Local variable

Input variable 2

Output variable

Input variable 3 Local variable

Input variable 1

Input variable 1

Output variable

Input variable 1 Local variable

Input variable 1
3 PROGRAM ORGANIZATION UNITS
3.2 Function Blocks (FB)

3

■Structure of instance
An instance consists of the following data areas.

■Capacity of instance
The capacity of each data area of an instance should be calculated as follows.

 • Local label area

Capacity of local label area of instance = Total capacity of data of local labels (except the ones with latch attribute) + Capacity

of reserved area

 • Local latch label area

Capacity of local latch label area of instances = Total capacity of data of local labels with latch attribute + Capacity of reserved

area

The local label area capacity is assigned by using the engineering tool. For details, refer to the following.

 GX Works3 Operating Manual

Data area Description

Local label area Used to assign the local label of the function block.

Local latch label area Used to assign the latch attribute local label of the function block.

Breakdown Description

Capacity of local labels (except the ones with latch

attribute)

Total capacity of the data areas used for local labels

Capacity of reserved area The capacity of the area reserved to add local labels except the ones with latch attribute and local

instances by executing the online program change function (fixed to 48 words)

Breakdown Description

Capacity of latch attribute local labels Total capacity of the data areas used for latch attribute local labels

Capacity of reserved area The capacity of the area reserved to add latch attribute local labels and local instances by executing the

online program change function (fixed to 16 words)
3 PROGRAM ORGANIZATION UNITS
3.2 Function Blocks (FB) 21

22
Setting initial values

■Initial values of local label
For the local label of a function block, an initial value can be set for each function block definition or instance.

Local labels whose initial value can be set differ depending on the type and attribute.

Page 37 Definable data types and initial values

■Initial values of instance
The following table summarizes the types of the initial values of instances.

Type Description

Default initial value An initial value predefined for each data type. If an initial value is not set for the local label of a function block, the default

initial value will be used.

(1) The initial values have not been set for the local labels in the FB1 definition.

(2) The default initial values are used.

FB definition initial value An initial value that is set when the local label of a function block is defined. If this initial value has been set, the same

definition initial value will be used for all the instances.

(1) The initial values have been set for the local labels in the FB1 definition.

(2) All the instances of FB1 will be initialized by the same definition initial value.

Instance initial value An initial value that is set for an instance included in the global label and program block local label definition.

(1) The initial value can be set for each instance in the FB1 definition.

(1)

(2)

FB1

AAA
BBB
CCC

AAA
BBB
CCC

-
0
0
0

AAA
BBB
CCC

-
0
0
0

FB1_a

FB1_b

-

-

Label name Initial value

FB1 definition

Local label definition (FB1)

Global label definition

Label name Initial value

Local label definition
(program block 1)

Label name Initial value

(1)

(2)

FB1

AAA
BBB
CCC

AAA
BBB
CCC

AAA

CCC

FB1_a

FB1_b

-
1111
2222
3333

-
1111
2222
3333

1111
2222
3333

BBB

-

-

Label name Initial value

FB1 definition

Local label definition (FB1)

Global label definition

Label name Initial value

Label name Initial value

Local label definition
(program block 1)

(1)

FB1

AAA
BBB
CCC

AAA
BBB
CCC

AAA

CCC

FB1_a

FB1_b

-
3333
4444
5555

-
7777
8888
9999

1111
2222
3333

BBB

-

-

Label name Initial value

FB1 definition

Local label definition (FB1)

Global label definition

Label name Initial value

Label name Initial value

Local label definition
(program block 1)
3 PROGRAM ORGANIZATION UNITS
3.2 Function Blocks (FB)

3

For function blocks, both the FB definition and instance initial values can be set.

If both initial values are set, the initial values used will take the following priority.

If two instances of a function block for which the FB definition initial value has been set are created and the

instance initial value is set for only one of them, the FB1 definition initial value will be used for the instance for

which the instance initial value has not been set and the instance initial value will be used for the other.

(1) When the instance initial value is not set, the FB definition initial value will be used.

(2) When the instance initial value is set, it will be used.

Priority Type Remarks

High

Low

Instance initial value

FB definition initial value

Default initial value Used if neither the instance nor FB definition initial value has been set.

(1)

(2)

FB1

AAA
BBB
CCC

AAA
BBB
CCC

AAA

CCC

FB1_a

FB1_b

-
1111
2222
3333

-
7777
8888
9999

1111
2222
3333

BBB

-

-
3333

Label name Initial value

FB1 definition

Local label definition (FB1)

Global label definition

Label name Initial value

Label name Initial value

Local label definition
(program block 1)
3 PROGRAM ORGANIZATION UNITS
3.2 Function Blocks (FB) 23

24
■Example
The following figure shows an example where the function block initial values are used.

EN and ENO
In the same way as a function, EN (enable input) and ENO (enable output) can also be appended to a function block to control

execution processing.

Page 14 EN and ENO

When the instance of a function to which EN/ENO has been appended is called, an actual argument must be assigned to EN.

Creating programs
The program of a function block can be created by using the engineering tool.

Navigation window "FB/FUN" Right-click "Add New Data"

The created program is stored in the FB/FUN file.

[CPU Parameter] "Program Setting" "FB/FUN File Setting"

Up to 64 programs can be stored in one FB/FUN file.

For details on program creation, refer to the following.

■Types of program
There are two types of function blocks and the program of each function block type is stored in different ways.

 • Macro type function block

 • Subroutine type function block

For details, refer to the following.

Page 25 Operation overview

The above cannot be selected for module function blocks, standard functions, and standard function blocks.

(1) The common initial values are set for all the instances.

(2) The individual initial values can be set for each instance.

(3) If the individual initial values are not set, the common ones will be used.

Item Reference

How to create function programs GX Works3 Operating Manual

Number of FB/FUN files that can be written to a CPU module MELSEC iQ-R CPU Module User's Manual (Startup)

(1)

(2)

(3)

AAA
BBB
CCC

BIT
INT
INT

TRUE
0

65535

FB1

FB1
FB1_a

FB1_b

AAA
BBB
CCC

BIT
INT
INT

FALSE
100

20000

AAA
BBB
CCC

BIT
INT
INT

FALSE
200

3500

FB1

FB1

FB1_c

AAA
BBB
CCC

BIT
INT
INT

TRUE
0

65535

FB1

[Defining FB]

[Creating instances]

Label
name Data type

Local label definition (FB1)
Initial
value

Initial value setting (FB1_a)

Initial value setting (FB1_b)

Initial value setting (FB1_c)

Setting initial value of FB definition

Setting initial value of instances

Creating
instances from
FB1

Label
name Data type Initial

value

Label
name Data type Initial

value

Label
name Data type Initial

value
3 PROGRAM ORGANIZATION UNITS
3.2 Function Blocks (FB)

3

■Applicable devices and labels
The following table lists the devices and labels that can be used by function block programs.

: Applicable, : Applicable only in instructions (Cannot be used to indicate the program step.), : Not applicable

Operation overview

■Macro type function blocks
The program of a macro type function block is loaded by a calling source program along the execution flow. At the time of

program execution, the loaded program is executed in the same way as the main program.

Use a macro type function block when giving a higher priority to the processing speed of the program.

■Subroutine type function blocks
The program of a subroutine type function block is stored in the FB/FUN file and called by the calling source program when

executed.

Use a subroutine type function block to reduce the program size.

Up to 32 subroutine type function blocks, macro type function blocks, and functions in total can be nested.

Type of device/label Availability

Label (other than the pointer type) Global label

Local label

Label (pointer type) Pointer type global label

Pointer type local label

Device Global device

Local device

Pointer Global pointer

Local pointer

(1) The FB1 program is loaded into the main program and executed.

(2) FB3 is loaded into the FB1 program.

(3) The FB2 program is loaded into the main program and executed in the same way as the FB1 program.

(2)

(1)
FB1_a
FB1

FB2_a
FB2

(3)

(Program file)
Main program

FB1 program

FB2 program

Actual structure of
main program

Execution
flow

FB3 program

FB1_a
FB1

FB3_a
FB3

FB2_a
FB2

(Program file)
Main program

(FB file)
FB1 program

(FB file)
FB2 program

(FB file)
FB3 program

Execution
flow
3 PROGRAM ORGANIZATION UNITS
3.2 Function Blocks (FB) 25

26
Number of steps (Macro type function blocks)

■Calling source
When calling a macro type function block, the calling source loads the call-target program during compilation.

■Program
The number of steps required for a function block program is the total number of instruction steps, like usual programs.

For the number of steps required for each instruction, refer to the following.

 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

Number of steps (Subroutine type function blocks)

■Calling source
When calling a subroutine type function block, the calling source generates the processing that passes the argument and

return value before and after the call processing.

(1) The program is loaded in two or more call locations.

(1) Passing the argument

(2) Calling the FB1 program

(3) Passing the return value

FB1

FB1_a

FB1

FB1_b

(FB1_b)

(FB1_a)

(1)

Program block 1 (displayed)

FB1 program

FB1 program

Program file

(1)

(2)

(3)

FB1

FBCall FB1_a
FB1

MOV D0 XX

D0
M0

D10
M10 Y40

Y20
M0

Y20

�

FB1_a

FB1_b

Program file

FB1 program

FB file

The call-target program is
replaced with the call
instruction.

Program block 1
(displayed)

Calling the
function block
3 PROGRAM ORGANIZATION UNITS
3.2 Function Blocks (FB)

3

 • Passing the argument

The instruction used to pass the argument differs depending on the class and data type of the argument. The following table

summarizes the instructions that can be used to pass the argument.

 • Calling the program

A total of 10 steps are required to call the function block program.

 • Passing the return value

The instruction and the number of steps used for passing the return value are identical to those for passing the argument.

 • EN/ENO

The following table lists the number of steps required for EN/ENO.

The number of steps may increase or decrease, depending on the following conditions.

 • The actual argument or return value of the function block are index-modified.

 • The address specifying the device exceeds 16 bits in length.

 • Digit specification is performed.

■Program
The number of steps required for a function block program is the total number of instruction steps, like usual programs.

For the number of steps required for each instruction, refer to the following.

 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

Argument
class

Data type Instruction used Number of steps

VAR_INPUT

VAR_IN_OUT

Bit LD+OUT

LD+MOVB

(Either of the instruction sets is used

depending on the combination of

programming language, function, and input

argument used.)

For the number of steps required for

each instruction, refer to the following.

 MELSEC iQ-R Programming

Manual (Instructions, Standard

Functions/Function Blocks)

Word [unsigned]/bit string [16 bits]

Double word [unsigned]/bit string [32 bits]

Word [signed]

Double word [signed]

LD+MOV

LD+DMOV

Single-precision real number LD+EMOV

Double-precision real number LD+EDMOV

Time LD+DMOV

String LD+$MOV

String [Unicode] LD+$MOV_WS

Array, Structure LD+BMOV

Argument
class

Data type Instruction used Number of steps

VAR_OUTPUT

VAR_IN_OUT

Same as for passing the argument Same as for passing the

argument

Same as for passing the argument

Item Number of steps

EN 3

ENO 2
3 PROGRAM ORGANIZATION UNITS
3.2 Function Blocks (FB) 27

28
3.3 Precautions

When a function is used

■Global pointer/local pointer/pointer type global labels
Global pointer, local pointer, and pointer type global labels cannot be used as labels indicating program steps in the function

program.

When a function block is used

■Global pointer/local pointer/pointer type global labels
Global pointer, local pointer, and pointer type global labels cannot be used as labels indicating program steps in the function

block program.

■When the index register is used
When the index register is used in the function block program, ladder programs for saving and returning the index register

values are required to protect the values.

Setting the index register data to 0 when saving can prevent an error that could be caused by an index modification validity

check. (Whether the device number exceeds the device range or not is checked.)

Ex.

A program that saves the values in the index register Z1 and Z2 before the program execution and returns the saved values

after the program execution

Set 0 to the index register areas.

Before the program execution,
save the index register values in
index_reg_tmp.

After the program execution, return
the values saved in index_reg_tmp
to the index register.

Program execution ��
3 PROGRAM ORGANIZATION UNITS
3.3 Precautions

3

■Specifying the start I/O number of intelligent function module
When accessing the buffer memory or I/O signals of the intelligent function module, specify the start I/O number using the

index register.

By receiving the start I/O number as an input variable, the same function block can be shared in multiple intelligent function

modules without changing the start I/O number.

Ex.

To access the I/O signals of the intelligent function module

Use the index register.

Ex.

To access the buffer memory of the intelligent function module

■When the CPU module that controls the target module of a module function block is changed
The module function block used in the program will be deleted if the CPU module set to "Control PLC Setting" of "I/O

Assignment" in system parameters is changed to another CPU module.

Copy the program into the project of another CPU module before changing the parameter setting.

 Input the start I/O number of the target intelligent function module in the index register.

 Shift the four bits in the value to the right by using the SFR instruction, or use the quotient obtained by dividing the value by 16.

Specify the value of
i_Start_IO_NO.

Access the I/O signals by using
the index register.

[Sequence program]

[FB program]

�

�

Access the buffer memory.
3 PROGRAM ORGANIZATION UNITS
3.3 Precautions 29

30
■Changing operating parameters of module function blocks
Operating parameters (external variables) other than input and output labels of module function blocks can be changed on the

Label Setting window by using the engineering tool.

 • When the instance of a module function block is set to local label, change the parameters on the "Local Label Setting"

window.

Project view "Program" "(execution type)" "(program file)" "(program block)" "Local Label"

 • When the instance of a module function block is set to global label, change the parameters on the "Global Label Setting"

window.

Project view "Label" "Global Label"

Ex.

Local Label Setting window

Set operating parameters in the "Initial Value" field.
3 PROGRAM ORGANIZATION UNITS
3.3 Precautions

3

3.4 When a Safety Program Is Used
A function used in a safety program is called a safety function, and a function block used in a safety program is called a safety

function block. Information not described in this section is same as that of standard functions and function blocks. (Page

13 Functions (FUN), Page 18 Function Blocks (FB))

Safety functions (Safety FUN)
This section describes safety functions.

Creating programs

■Applicable devices and labels
The following table lists the devices and labels that can be used in safety functions.

: Applicable, : Not applicable

*1 The following data types cannot be used.
Timer, retentive timer, counter, long timer, long retentive timer, and long counter

Number of steps

■Passing the argument
When calling a safety function, the calling source generates the processing that passes the argument before and after the call

processing. The instruction used to pass the argument differs depending on the class and data type of the argument. The

following table summarizes the instructions that can be used to pass the argument.

: Applicable, : Not applicable

For the number of steps required for each instruction, refer to the following.

 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

Type of device/label Availability

Label (other than the pointer type) Global label

Local label

Standard/safety shared label

Safety global label

Safety local label *1

Label (pointer type) Pointer type global label

Pointer type local label

Device Global device

Local device

Safety global device

Safety local device

Pointer Global pointer

Local pointer

Argument class Data type Instruction used Availability

VAR_INPUT Bit LD+OUT

Word [unsigned]/bit string [16 bits]

Double word [unsigned]/bit string [32 bits]

Word [signed]

Double word [signed]

LD+MOV

LD+DMOV

Single-precision real number LD+EMOV

Double-precision real number LD+EDMOV

Time LD+DMOV

String LD+$MOV

String [Unicode] LD+$MOV_WS

Array, Structure LD+BMOV
3 PROGRAM ORGANIZATION UNITS
3.4 When a Safety Program Is Used 31

32
Safety function blocks (Safety FB)
This section describes safety function blocks.

Instances

■Structure of instance
An instance of a safety function block consists of the following data areas.

: Applicable, : Not applicable

Creating programs

■Applicable devices and labels
The following table lists the devices and labels that can be used in safety function blocks.

: Applicable, : Not applicable

Number of steps (subroutine type function blocks)

■Passing the argument
When calling a safety function block, the calling source generates the processing that passes the argument and return value

before and after the call processing. The instruction used to pass the argument differs depending on the class and data type

of the argument. The following table summarizes the instructions that can be used to pass the argument.

: Applicable, : Not applicable

For the number of steps required for each instruction, refer to the following.

 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

Data area Description Availability

Local label area Used to assign the local label of the function block.

Local latch label area Used to assign the latch attribute local label of the function block.

Type of device/label Availability

Label (other than the pointer type) Global label

Local label

Standard/safety shared label

Safety global label

Safety local label

Label (pointer type) Pointer type global label

Pointer type local label

Device Global device

Local device

Safety global device

Safety local device

Pointer Global pointer

Local pointer

Argument class Data type Instruction used Availability

VAR_INPUT

VAR_IN_OUT

Bit LD+OUT

Word [unsigned]/bit string [16 bits]

Double word [unsigned]/bit string [32 bits]

Word [signed]

Double word [signed]

LD+MOV

LD+DMOV

Single-precision real number LD+EMOV

Double-precision real number LD+EDMOV

Time LD+DMOV

String LD+$MOV

String [Unicode] LD+$MOV_WS

Array, Structure LD+BMOV
3 PROGRAM ORGANIZATION UNITS
3.4 When a Safety Program Is Used

4

4 LABELS

A label is a variable consisting of a specified string used in I/O data or internal processing.

Using labels in programming enables creation of programs without being aware of devices and buffer memory sizes.

For this reason, a program using labels can be reused easily even in a system having a different module configuration.

When labels are used, there are some precautions on programming and functions used. For details, refer to the following.

Page 44 Precautions

4.1 Label Types
There are two types of labels described in this manual.

 • Global labels

 • Local labels

Global labels
A global label is a label that provides the same data within a single project. It can be used in all programs in the project.

A global label can be used in program blocks and function blocks.

The settings of a global label include a label name, class, and data type.

By opening global labels, they can be referenced from GOT and other stations, and can be used for monitoring and accessing

data.

■Device assignment
Devices can be assigned to global labels.

Local labels
A local label is a label that can be used only in the declared POU. Local labels outside the declared POU cannot be used.

The settings of a local label include a label name, class, and data type.

There are other types of labels available in addition to the global labels and local labels.

[System labels]

A system label is a label that provides the same data in all projects compatible with iQ Works. It can be

referenced from the GOT and the CPU modules and Motion controllers on other stations, and used for

monitoring and accessing data.

For details, refer to the following.

 iQ Works Beginner's Manual

[Module labels]

A module label is a label defined uniquely by each module. A module label is automatically generated by the

engineering tool from the module used, and can be used as a global label.

For details, refer to the following.

 Function Block Reference for the module used

Item Description

Label to which no device is assigned • Programming without being aware of devices is possible.

• Defined labels are allocated to the label area or latch label area in the device/label memory.

Label to which a device is assigned • If a device is to be programmed as a label against a device that is being used for input or output, the device can be

assigned directly.

• Defined labels are allocated to the device area in the device/label memory.
4 LABELS
4.1 Label Types 33

34
4.2 Classes
The label class indicates from which POU and how a label can be used.

Different classes can be selected depending on the type of POU.

Global label

Class Description Applicable POU

Program
block

Function block Function

VAR_GLOBAL A common label that can be used in both program blocks and

function blocks

VAR_GLOBAL_CONSTANT A common constant that can be used in both program blocks

and function blocks

VAR_GLOBAL_RETAIN A latch type label that can be used in both program blocks and

function blocks

Local label

Class Description Applicable POU

Program
block

Function block Function

VAR A label that can be used within the range of a declared POU.

This label cannot be used in other POUs.

VAR_CONSTANT A constant that can be used within the range of a declared

POU.

This label cannot be used in other POUs.

VAR_RETAIN A latch type label that can be used within the range of a

declared POU. This label cannot be used in other POUs.

VAR_INPUT A label that inputs a value into a function or function block.

This label receives a value, and the received value cannot be

changed in a POU.

VAR_OUTPUT A label that outputs a value from a function or function block

VAR_OUTPUT_RETAIN A latch type label that outputs a value from a function or

function block

VAR_IN_OUT A local label that receives a value and outputs the value from a

POU. The value can be changed in a POU.

VAR_PUBLIC A label that can be accessed from other POUs

VAR_PUBLIC_RETAIN A latch type label that can be accessed from other POUs
4 LABELS
4.2 Classes

4

4.3 Data Types
The data types of a label are classified according to the bit length, processing method, and value range.

There are two data types.

 • Primitive data type

 • Generic data type (ANY type)

Primitive data type
The following table lists the data types included in the primitive data type.

*1 If the single-precision real number exceeds the significant digit, 7, the 8th digit is rounded off. If the double-precision real number
exceeds the significant digit, 15, the 16th digit is rounded off.

*2 The time type is used in a time data type function of standard functions. For standard functions, refer to the following.
 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

*3 When using a constant for the time type label, add "T#" at the beginning of the constant.

Data type Description Value range Bit
length

Bit BOOL Represents the alternative status, such as

on or off.

0 (FALSE), 1 (TRUE) 1 bit

Word [unsigned]/bit string [16 bits] WORD 16-bit array 0 to 65535 16 bits

Double word [unsigned]/bit string [32

bits]

DWORD 32-bit array 0 to 4294967295 32 bits

Word [signed] INT Positive and negative integer values -32768 to 32767 16 bits

Double word [signed] DINT Positive and negative double-precision

integer values

-2147483648 to 2147483647 32 bits

Single-precision real number REAL Numerical values of decimal places (single-

precision real number values)

Number of significant digits: 7 (6 digits of

decimal places)*1

-2128 to -2-126, 0, 2-126 to 2128

E-3.402823+38 to E-1.175495-

38, 0, E1.175495-38 to

E3.402823+38

32 bits

Double-precision real number LREAL Numerical values of decimal places

(double-precision real number values)

Number of significant digits: 15 (14 digits of

decimal places)*1

-21024 to -2-1022, 0, 2-1022 to 21024

E-1.79769313486231+308 to E-

2.22507385850721-308, 0,

E2.22507385850721-308 to

E1.79769313486231+308

64 bits

Time*2 TIME Numerical values as day, hour, minute,

second, and millisecond

T#-24d20h31m23s648ms to

T#24d20h31m23s647ms*3
32 bits

String STRING Characters represented by ASCII code or

Shift JIS code

255 one-byte characters

maximum

Variable

String [Unicode] WSTRING Characters represented by Unicode 255 characters maximum Variable

Timer TIMER Structure corresponding to the device,

timer (T)

Page 36 Timer and counter data types

Retentive timer RETENTIVETIMER Structure corresponding to the device,

retentive timer (ST)

Long timer LTIMER Structure corresponding to the device, long

timer (LT)

Long retentive timer LRETENTIVETIMER Structure corresponding to the device,

timer (LST)

Counter COUNTER Structure corresponding to the device,

counter (C)

Long counter LCOUNTER Structure corresponding to the device,

counter (LC)

Pointer POINTER Type corresponding to the device, pointer (P)

 MELSEC iQ-R CPU Module User's Manual (Application)
4 LABELS
4.3 Data Types 35

36
 • The bit data in the word type label can be used by specifying a bit number.

 • The bit type array label can be used as 16-bit or 32-bit data by specifying the number of digits.

For the bit specification and digit specification methods, refer to the following.

 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

■Timer and counter data types
The data types of the timer, counter, long counter, retentive timer, long retentive timer, and long timer are the structures having

a contact, coil, or current value.

*1 The unit of the current value is set in CPU parameters ("Timer Limit Setting").

For details on the operation of each device, refer to the following.

 MELSEC iQ-R CPU Module User's Manual (Application)

The specification method of each member is the same as that of the structure data type. (Page 41 Structures)

Data type Member
name

Member data type Description Value range

Timer TIMER S Bit Indicates a contact. The operation is the same

as the contact (TS) of a timer device.

0 (FALSE), 1

(TRUE)

C Bit Indicates a coil. The operation is the same as

the coil (TC) of a timer device.

0 (FALSE), 1

(TRUE)

N Word [unsigned]/bit

string [16 bits]

Indicates the current value. The operation is the

same as the current value (TN) of a timer

device.

0 to 65535*1

Retentive timer RETENTIVETIMER S Bit Indicates a contact. The operation is the same

as the contact (STS) of a retentive timer device.

0 (FALSE), 1

(TRUE)

C Bit Indicates a coil. The operation is the same as

the coil (STC) of a retentive timer device.

0 (FALSE), 1

(TRUE)

N Word [unsigned]/bit

string [16 bits]

Indicates the current value. The operation is the

same as the current value (STN) of a retentive

timer device.

0 to 65535*1

Long timer LTIMER S Bit Indicates a contact. The operation is the same

as the contact (LTS) of a long timer device.

0 (FALSE), 1

(TRUE)

C Bit Indicates a coil. The operation is the same as

the coil (LTC) of a long timer device.

0 (FALSE), 1

(TRUE)

N Double word [unsigned]/

bit string [32 bits]

Indicates the current value. The operation is the

same as the current value (LTN) of a long timer

device.

0 to 4294967295*1

Long retentive timer LRETENTIVETIME

R

S Bit Indicates a contact. The operation is the same

as the contact (LSTS) of a long retentive timer

device.

0 (FALSE), 1

(TRUE)

C Bit Indicates a coil. The operation is the same as

the coil (LSTC) of a long retentive timer device.

0 (FALSE), 1

(TRUE)

N Double word [unsigned]/

bit string [32 bits]

Indicates the current value. The operation is the

same as the current value (LSTN) of a long

retentive timer device.

0 to 4294967295*1

Counter COUNTER S Bit Indicates a contact. The operation is the same

as the contact (CS) of a counter device.

0 (FALSE), 1

(TRUE)

C Bit Indicates a coil. The operation is the same as

the coil (CC) of a counter device.

0 (FALSE), 1

(TRUE)

N Word [unsigned]/bit

string [16 bits]

Indicates the current value. The operation is the

same as the current value (CN) of a counter

device.

0 to 65535

Long counter LCOUNTER S Bit Indicates a contact. The operation is the same

as the contact (LCS) of a long counter device.

0 (FALSE), 1

(TRUE)

C Bit Indicates a coil. The operation is the same as

the coil (LCC) of a long counter device.

0 (FALSE), 1

(TRUE)

N Double word [unsigned]/

bit string [32 bits]

Indicates the current value. The operation is the

same as the current value (LCN) of a long

counter device.

0 to 4294967295
4 LABELS
4.3 Data Types

4

Generic data type (ANY type)
The generic data type is the data type of the labels which summarize several primitive data types.

Generic data types are used when multiple data types are allowed for function and function block arguments and return

values.

Labels defined in generic data types can be used in any sub-level data type.

For the types of generic data types and the primitive data types, refer to the following.

 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

Definable data types and initial values
The following tables list the definable data types and initial value setting possibilities for each label class.

*1 The pointer type cannot be defined.
*2 None of the timer, retentive timer, long timer, counter, long timer, long retentive timer, and long counter types can be defined.

 • The initial value of the global label where the device has been assigned follows that in the device.

 • The initial value of the function block follows the local label setting within the function block.

 • The initial value of the structure type follows that of the structure definition.

Global label

Class Definable data type Initial value setting
possibility

VAR_GLOBAL Primitive data type, array, structure, function block

VAR_GLOBAL_CONSTANT Primitive data type*1

VAR_GLOBAL_RETAIN Primitive data type*1, array, structure

Local label (program block)

Class Definable data type Initial value setting
possibility

VAR Primitive data type, array, structure, function block

VAR_CONSTANT Primitive data type*1

VAR_RETAIN Primitive data type*1, array, structure

Local label (function)

Class Definable data type Initial value setting
possibility

VAR Primitive data type*2, array, structure

VAR_CONSTANT Primitive data type*1

VAR_INPUT Primitive data type*1*2, array, structure

VAR_OUTPUT

Return value

Local label (function block)

Class Definable data type Initial value setting
possibility

VAR Primitive data type, array, structure, function block

VAR_CONSTANT Primitive data type*1

VAR_RETAIN Primitive data type*1, array, structure

VAR_INPUT

VAR_OUTPUT

VAR_OUTPUT_RETAIN

VAR_IN_OUT

VAR_PUBLIC

VAR_PUBLIC_RETAIN
4 LABELS
4.3 Data Types 37

38
4.4 Arrays
An array represents a consecutive aggregation of same data type labels as a single name.

Primitive data types, structures, and function blocks can be defined as arrays.

The maxim number of array elements varies depending on the data type.

Defining arrays

■Array elements
When an array is defined, the number of elements, or the length of array, must be determined. For the range of the number of

elements, refer to the following.

Page 39 Range of the number of array elements

■Definition format
The following table lists definition format examples up to three dimensions.

The range from the array start value to the array end value is the number of elements.

■Initial value
One initial value can be set for a single array definition. (Different initial values cannot be set for each element.)

The same initial value is stored in all the array elements.

• One-dimensional array • Two-dimensional array

Number of
array
dimensions

Format Remarks

One dimension Array of primitive data type/structure name (array start value..array end value) • For the primitive data

type:

Page 35 Primitive data

type

• For the structure name:

Page 41 Structures

[Definition example] Bit (0..2)

Two dimensions Array of primitive data type/structure name (array start value..array end value, array start value..array end

value)

[Definition example] Bit (0..2, 0..1)

Three

dimensions

Array of primitive data type/structure name (array start value..array end value, array start value..array end

value, array start value..array end value)

[Definition example] Bit (0..2, 0..1, 0..3)

bLabel1 [0]

[1]

[n]

�

Label name Index

bLabel2 [0,0] [0,1] [0,n]

[1,0] [1,1]

[m,0] [m,n]

� � �

�
�

�

��

�

Label name Index
4 LABELS
4.4 Arrays

4

How to use arrays
To use an array, add an index enclosed by '[]' after each label name to identify individual labels.

An array with two or more dimensions should be represented with indexes delimited by a comma (,) in '[]'.

The following table lists the types of indexes that can be specified for arrays.

 • The data storage location becomes dynamic by specifying a label for the array index. This enables arrays to

be used in a program that executes loop processing. The following is a program example that consecutively

stores "1234" in the "uLabel4" array.

 • The element number of the array can be omitted in ladder diagram. If the element number is omitted, it is

regarded as the start number and converted. For example, when the defined label name is "boolAry" and

the data type is "Bit (0..2, 0..2)", the operation of "boolAry[0,0]" is the same as that of "boolAry".

 • When a multidimensional array is specified as setting data of instructions, functions, and function blocks

that use arrays, the rightmost element is regarded as a one-dimensional array.

Range of the number of array elements
The maxim number of array elements varies depending on the data type.

Type Specification example Remarks

Constant bLabel1[0] An integer equal to or greater than 0 can be specified.

Device bLabel1[D0] A word device, double-word device, decimal constant, or hexadecimal

constant can be specified. (ST, LST, G, and HG cannot be specified.)

Label bLabel1[uLabel2] The following data types can be specified.

• Word [unsigned]/bit string [16 bits]

• Double word [unsigned]/bit string [32 bits]

• Word [signed]

• Double word [signed]

Expression bLabel1[5+4] Expressions can be specified only in ST language.

Data type Setting range

Bit

Word [unsigned]/bit string [16 bits]

Word [signed]

Timer

Counter

Retentive timer

1 to 2147483648

Double word [unsigned]/bit string [32 bits]

Double word [signed]

Single-precision real number

Time

Long counter

Long retentive timer

Long timer

1 to 1073741824

Double-precision real number 1 to 536870912

String 1 to 2147483648 String length

String [Unicode] 1 to 1073741824 String length

Function block 1 to 32768

bLabel1 [0] bLabel2 [0,3]

Label name Index

bLabel1
INC wLabel3

bLabel2
MOV K1234 uLabel4[wLabel3]
4 LABELS
4.4 Arrays 39

40
Precautions

■When an interrupt program is used
When a label or device is specified for the array index, the operation is performed with a combination of multiple instructions.

For this reason, if an interrupt occurs during operation of the label defined as an array, data inconsistency may occur

producing an unintended operation result.

To prevent data inconsistency, create a program using the DI/EI instructions that disables/enables interrupt programs as

shown below.

For the DI/EI instructions, refer to the following.

 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

■Array elements
When accessing the element defined in an array, access it within the range of the number of elements.

If a constant out of the range defined for the array index is specified, a compile error will occur.

If the array index is specified with data other than a constant, a compile error will not occur. The processing will be performed

by accessing another label area or latch label area.

DI

EI

Program of the label defined as an array
4 LABELS
4.4 Arrays

4

4.5 Structures
A structure is a data type containing one or more labels and can be used in all POUs.

Members (labels) included in a structure can be defined even when their data types are different.

Creating structures
To create a structure, first define the structure, and then define members in the structure.

How to use structures
To use a structure, register a label using the defined structure as the data type.

To specify each member in a structure, add the member name after the structure label name with a period '.' as a delimiter in

between.

Ex.

Specifying a member in the structure

 • When labels are registered by defining multiple data types in a structure and used in a program, the order

the data is stored after operation is not the order the data types were defined. When programs are

converted using the engineering tool, labels are classified into type and data type, and then assigned to the

memory (memory assignment by packing blocks).

 GX Works3 Operating Manual

 • If the label of a structure is specified for an instruction that uses control data (a group of operands that

determines operation of the instruction), the labels are not assigned in the order defined by packing blocks.

�

Member (label 1)

Member (label 2)

Member (label 3)

Member (label 4)

Structure

stLabel1 . bLabel1

Structure label name
Member name
4 LABELS
4.5 Structures 41

42
Structure arrays
A structure can also be used as an array.

When a structure is declared as an array, add an index enclosed by '[]' after the structure label name.

A structure array can also be specified as an argument of a function or function block.

Ex.

Specifying an element of a structure declared as an array

Data types that can be specified
The following data types can be specified as structure members.

 • Primitive data type

 • Pointer type

 • Array

 • Other structures

Types of structures
Each of the following labels is predefined as a structure.

Type Reference

Module label Function Block Reference for the module used

Timer type Page 35 Data Types

Retentive timer type

Counter type

Long timer type

Long retentive timer type

Long counter type

� � � �

Member (label 1)

Member (label 2)

Member (label 3)

Member (label 4)

Structure label [1]

Member (label 1)

Member (label 2)

Member (label 3)

Member (label 4)

Structure label [2]

Member (label 1)

Member (label 2)

Member (label 3)

Member (label 4)

Structure label [3]

Member (label 1)

Member (label 2)

Member (label 3)

Member (label 4)

Structure label [4]

stLabel [0] . bLabel1

Structure label name

Member name
Index
4 LABELS
4.5 Structures

4

4.6 Constants

Types of constants
The following table provides information on how to set constants to labels.

*1 In the notation of binary, octal, decimal, hexadecimal, and real numbers, the numbers can be separated using an underscore "_" to
make programs easy to see. (The underscores are ignored in program processing.)

Using "$" in a string type constant
"$" is used as an escape sequence.

Two hexadecimal digits following "$" is recognized as an ASCII code and the character corresponding to the ASCII code is

inserted into the string.

If the two hexadecimal digits following "$" do not correspond to the ASCII code, a conversion error occurs.

Note, however, that no error occurs when the character following "$" is one of the following.

Applicable data type Type How to set Example

Bit Boolean Set FALSE or TRUE. TRUE, FALSE

Binary Add "2#" before the binary number to be used. 2#0, 2#1

Octal Add "8#" before the octal number to be used. 8#0, 8#1

Decimal Directly enter the decimal number to be used. Or, add "K" before

the number.

0, 1, K0, K1

Hexadecimal Add "16#" before the hexadecimal number to be used. Or, add

"H" before the number.

16#0, 16#1, H0, H1

• Word [unsigned]/bit string [16 bits]

• Double word [unsigned]/bit string [32

bits]

• Word [signed]

• Double word [signed]

Binary*1 Add "2#" before a binary number. 2#0010,

2#01101010,

2#1111_1111

Octal*1 Add "8#" before an octal number. 8#0, 8#337, 8#1_1

Decimal*1 Directly enter a decimal number, or add "K" before the number. 123, K123, K-123,

12_3

Hexadecimal*1 Add "16#" before a hexadecimal number.

Or, add "H" before the number.

16#FF, HFF, 16#1_1

• Single-precision real number

• Double-precision real number

Real number*1 Directly enter a real number including the decimal point and

numerical values of decimal places. Or, add "E" before the

number.

2.34, E2.34, E-2.34,

3.14_15

Real number

(exponential

notation)

Add "E" before the exponential notation or real number, and add

"+" or "-" before the exponent.

1.0E6, E1.001+5,

1.0E-6, E1.001-5

• String

• String [Unicode]

String

String [Unicode]

Enclose a string in single quotation marks (') or double quotation

marks (").

'ABC', "ABC"

Time Time Add "T#" at the beginning. T#1h,

T#1d2h3m4s5ms

TIME#1h

Notation Symbol used in a string or printer code

$$ $

$' '

$" "

$L or $l Line feed

$N or $n New line

$P or $p Page feed

$R or $r Return

$T or $t Tab
4 LABELS
4.6 Constants 43

44
4.7 Precautions

Functions with restrictions
The following functions have restrictions on the use of labels.

*1 Global labels can be used as devices by assigning a device.

■Defining and using a global label with a device assigned
Define a global label following the procedure below, and use it when the functions having restriction on the use of labels are

executed.

Since the device area in the device/label memory is used, secure the device area capacity.

1. Secure the device area to be used.

CPU Parameter Memory/Device Setting Device/Label Memory Area Setting

2. Define a label as a global label, and assign a device manually.

3. Use the label defined in step 2 for the functions having no restrictions on the use of labels. Use the device assigned to

the label for the function having restrictions on the use of labels.

■Copying the label data into a specified device
Copy the label data into a specified device following the procedure below, and use the copy-target device.

Since the device area in the device/label memory is used, secure the device area capacity.

1. Secure the device area to be used.

CPU Parameter Memory/Device Setting Device/Label Memory Area Setting

2. Create a program using the label. The following is the program example for copying the data. (The data logging function

uses the data in udLabel1.)

3. Use the device where the data has been transferred in step 2 for the function having restrictions on the use of labels. (In

the program example in step 2, use D0.)

 • The number of steps increases because of the transfer instruction. (The scan time increases.)

 • Decide the transfer instruction position considering the timing of writing data to the label and executing the

function.

Item Description

CPU parameter • Trigger of an event execution type

program

• Refresh setting among multiple CPU

modules

Use devices because global labels nor local labels cannot be specified for these

functions.*1

Module parameter • Predefined protocol support function

• Refresh setting of intelligent function

module

• Refresh setting of network module (SB/

SW only)

Use module labels for these functions. Use devices if module labels are not used.*1

• Refresh setting of network module (other

than SB/SW)

Use devices because global labels nor local labels cannot be specified for these

functions.*1

Data logging function

Memory dump function

Real-time monitor function

Use devices if there is a possibility for using these functions because global labels

nor local labels cannot be specified for these functions.*1

If a device cannot be assigned to the global label. add the transfer instruction to the

scan program so that the data of the global label is copied to a specified device every

scan, and then use the copy-target device.
4 LABELS
4.7 Precautions

4

Precautions for creating programs
When specifying a label as an operand used in instructions, match the data type of the label with that of the operand. In

addition, when specifying a label as an operand used in instructions that control continuous data, specify the data range used

in instructions within the data range of the label.

Ex.

SFT(P) instruction

Ex.

SER(P) instruction

Specify a label which has a larger data range than the search range (n) points.

Restrictions on naming labels
The following restrictions apply when naming labels.

 • Start the name with a character or underline (_). Numbers cannot be used at the beginning of label names.

 • Reserved words cannot be used.

For details on the reserved words, refer to the following.

 GX Works3 Operating Manual

SET bLabel[0]

SFTP bLabel[1]

SET wLabel1.0

SFTP wLabel1.1

To shift the bits correctly, specify the array of the bit type label.

Specify the bit number of the word type label.

or

123

10

500

20

123

wLabel1[0]

wLabel1[1]

wLabel1[n+1]

-123

Start device number of search range

Data matched

Search range:
(n) points
4 LABELS
4.7 Precautions 45

46
4.8 When a Safety Program Is Used
A label used in safety programs is called a safety label. Information not described in this section is same as that of standard

labels. (Page 33 LABELS)

Safety label types
There are three safety label types. Only the following labels can be used in safety programs.

 • Safety global label*1

 • Standard/safety shared label*2

 • Safety local label

*1 Safety devices can be assigned.
*2 Can be used in standard programs and standard function blocks as well.

An initial value cannot be set to safety labels in the CPU parameter. For details, refer to the following.

 MELSEC iQ-R CPU Module User's Manual (Application)

How to use standard/safety shared labels
A standard/safety shared label is used to pass device data from a safety program to a standard program, and vice versa.

When a standard/safety shared label is used in a safety program as shown in the examples below, the program needs to be

created so that the safety state is secured.

■To restart safety control by the command from the GOT

■To use the annunciator (F)
The safe state signal status can be controlled using the annunciator (F) in the standard program. The safe state signal status

is passed from the safety program to the standard program via the standard/safety shared label (safe_state), and the status is

controlled with the annunciator No.5. If an error is detected with the annunciator, the corresponding annunciator number is

output to Y20.

 • Standard program

(0)

(4)

(8)

When the safe state signal turns off, the annunciator No.5 turns on.

The annunciator number detected by SM62 (Annunciator) is output to Y20.

When the safe state signal turns on, the annunciator No.5 turns off.

Standard control

Standard control

Safety control

Safety control

Used in a safety control.Transfer data.

Standard/safety
shared label

Standard/safety
shared label

Standard program

Perform write to turn on M0 from GOT.

Safety program
Create a program in which the safety control processing is set in
a safety program and the standard/safety shared label is used.

Restart processing
SM400 M0

[SET GOT_OPE]
GOT_OPE SA\M0
4 LABELS
4.8 When a Safety Program Is Used

4

Classes
The following table lists the availability of the classes of safety global labels and standard/safety shared labels.

: Applicable, : Not applicable

The following table lists the availability of the classes of safety local labels.

: Applicable, : Not applicable

Class Availability

Safety global label Standard/safety shared label

VAR_GLOBAL

VAR_GLOBAL_CONSTANT

VAR_GLOBAL_RETAIN

Class Availability

Safety program Safety function Safety function block

VAR

VAR_CONSTANT

VAR_RETAIN

VAR_INPUT

VAR_OUTPUT

VAR_OUTPUT_RETAIN

VAR_IN_OUT

VAR_PUBLIC

VAR_PUBLIC_RETAIN
4 LABELS
4.8 When a Safety Program Is Used 47

48
Data types

Primitive data type
The following table lists the availability of primitive data types.

: Applicable, : Not applicable

Structures
The structure definition is shared by standard programs and safety programs. However, it cannot be used in the following

cases.

 • A member of the primitive data type which cannot be used in safety programs exists.

 • An initial value is set in the structure definition.

Data type Availability

Bit BOOL

Word [unsigned]/bit string [16 bits] WORD

Double word [unsigned]/bit string [32 bits] DWORD

Word [signed] INT

Double word [signed] DINT

Single-precision real number REAL

Double-precision real number LREAL

Time TIME

String STRING

String [Unicode] WSTRING

Timer TIMER

Retentive timer RETENTIVETIMER

Long timer LTIMER

Long retentive timer LRETENTIVETIMER

Counter COUNTER

Long counter LCOUNTER

Pointer POINTER
4 LABELS
4.8 When a Safety Program Is Used

5

5 LADDER DIAGRAM

Ladder diagram is a programming language used to describe sequence control. Each ladder consists of contacts and coils

and represents logical operations consisting of AND/OR in combinations of series and parallel.

This chapter describes the operation and specifications of the ladder diagram. For the operation method of the

engineering tool for creating a ladder program, refer to the following.

 GX Works3 Operating Manual

5.1 Configuration
The following are the programs written in ladder diagram.

Ladder symbols
The following table lists the ladder symbols that can be used for programming in ladder diagram.

(1) Ladder program consisting of a contact and a coil

(2) Ladder program configured in series

(3) Ladder program configured in parallel

(4) Ladder program using an instruction

(5) Ladder program using a standard function/function block

Item Description

Normally open contact Energized when the specified device or label is on.

Normally closed contact Energized when the specified device or label is off.

Rising edge pulse Energized on the rising edge (off to on) of the specified device or label.

Falling edge pulse Energized on the falling edge (on to off) of the specified device or label.

Negated rising edge pulse Energized when the specified device or label is off, on, or on the falling edge (on to off).

Negated falling edge pulse Energized when the specified device or label is off, on, or on the rising edge (off to on).

(1)

(2)

(3)

(4)

(5)
5 LADDER DIAGRAM
5.1 Configuration 49

50
Program execution order
The program is executed in order of the following numbers.

When the above program is executed, Y1 and Y2 turn on while X1 to X4 turn on or off as shown below.

Operation result rising edge

pulse conversion

Energized on the rising edge (off to on) of the operation result. De-energized while the

operation result is not on the rising edge.

Operation result falling edge

pulse conversion

Energized on the falling edge (on to off) of the operation result. De-energized while the

operation result is not on the falling edge.

Operation result inversion Inverts the previous operation results.

Coil Outputs the operation result to the specified device or label.

Instruction Executes the instruction specified in "[]".

Loopback When the number of contacts that can be created on a single ladder line is exceeded, the

ladder is looped back with loopback source and destination symbols created on it.

Function Executes a function.

• How to create functions (GX Works3 Operating Manual)

• Standard functions (MELSEC iQ-R Programming Manual (Instructions, Standard

Functions/Function Blocks))

Function block Executes a function block.

• How to create function blocks (GX Works3 Operating Manual)

• Standard function blocks (MELSEC iQ-R Programming Manual (Instructions,

Standard Functions/Function Blocks))

• Module function blocks (Function Block Reference for the module used)

Item Description

Y1X1

X2

X3

X4 Y2

�

�

� �

� �

ON
OFF

ON
OFF

ON
OFF

ON
OFF

ON
OFF

ON
OFF

X2

X1

X3

X4

Y1

Y2
5 LADDER DIAGRAM
5.1 Configuration

5

5.2 Inline ST
The inline ST is the function used to create an inline ST box that displays an ST program in the cell of the instruction

corresponding to a coil in the ladder editor, and edit and monitor it.

This function enables to create numerical operations and character string processing easily in ladder programs.

 • Program that does not use the inline ST

 • Program that uses the inline ST

 • The inline ST cannot be used in safety programs.

 • The inline ST cannot be used in the Zoom editor of SFC programs.

Specifications
For the specifications of the inline ST, refer to the specifications of the ST language.

Page 54 STRUCTURED TEXT LANGUAGE
5 LADDER DIAGRAM
5.2 Inline ST 51

52
Precautions
 • Only one inline ST can be created on a single line of a ladder program.

 • Both a function block and inline ST box cannot be used on a single line of a ladder program.

 • Creating an inline ST box at the position of an instruction corresponding to a contact creates an inline ST box at the position

of an instruction corresponding to a coil.

 • Up to 2048 characters can be input in the inline ST. (A line feed is counted as one character.)

 • Do not use the instructions executed at the rising edge or falling edge, special timer instructions, edge detection function

blocks, nor counter function blocks in the inline ST because they may not operate properly.

 • Using a RETURN statement in the inline ST causes the processing in the inline ST box to end, instead of the processing of

the program block.

 • No function block can be called from the inline ST.
5 LADDER DIAGRAM
5.2 Inline ST

5

5.3 Statements and Notes
Statements and notes can be used in ladder programs.

Statements
A statement is used to add a comment to a ladder block. Adding a comment makes it easy to understand the flow of

processing.

There are three types of statements: line statement, P statement, and I statement.

The line statement can be displayed in the tree of the navigation window.

■Line statement
This type of statement adds a comment to the entire ladder block.

■P statement
This type of statement adds a comment to a pointer number.

■I statement
This type of statement adds a comment to an interrupt pointer number.

Notes
A note is used to add a comment to a coil and instruction in a program.

Adding a comment makes it easy to understand the contents of the coil and instruction.

Categories of statements and notes
Statements and notes are classified into two categories: "integrated" and "peripheral".

Category Type Description

Integrated • Line statement

• P statement

• I statement

• Note

Statements and notes can be stored in a CPU module.

An integrated statement uses the following number of steps. (Assumed that only one-byte

characters are entered. Values after the decimal point are rounded up.)

• 2 + Number of characters 2 (steps)

Peripheral • Line statement

• P statement

• I statement

• Note

Statements and notes cannot be stored in a CPU module. (Only position information is stored.)

Statements and notes need to be stored in a peripheral.

One line consumes one step.

A text that has been entered is automatically preceded by an asterisk "*".
5 LADDER DIAGRAM
5.3 Statements and Notes 53

54
6 STRUCTURED TEXT LANGUAGE

ST language is defined by International Standard IEC61131-3 that defines the logic description system. ST language is a text

language with a similar grammatical structure to C. This language is suitable for programming complicated processing that

cannot be easily described by ladder diagram.

This chapter describes the operation and specifications of the structured text language. For the operation

method of the engineering tool for creating an ST program, refer to the following.

 GX Works3 Operating Manual

The ST language supports control syntax, operational expressions, function blocks (FB), and functions (FUN), and can

describe them as shown below.

Ex.

Control syntax such as selective branches by conditional statements and repetitions by iteration statements

Ex.

Expression using operators (*, /, +, -, <, >, =)

Ex.

Calling function blocks that have been defined

Ex.

Calling standard functions

(*Control conveyors, Line A to C.*)

CASE Line OF

1:

Start_switch := TRUE; (*The conveyor starts.*)

2:

Start_switch := FALSE; (*The conveyor stops.*)

3:

Start_switch := TRUE; (*The conveyor stops with an alarm.*)

ELSE

Alarm_lamp := TRUE;

END_CASE;

IF Start_switch = TRUE THEN (*The conveyor starts and performs processing 100 times.*)

FOR Count := 0 TO 100 BY 1 DO

Count_No. := Count_No +1;

END_FOR;

END_IF;

D0 := D1 * D2 + D3 / D4 - D5 ;

IF D0 > D10 THEN

 D0 := D10;

END_IF;

//FB data name: LINE1_FB

//Input variable: I_Test

//Output variable: O_Test

//Input/output variable: IO_Test

//FB label name: FB1

FB1(I_Test:= D0 , O_Test => D1 ,IO_Test:= D100);

(*Convert BOOL data type to INT/DINT data type.*)

wLabel2 := BOOL_TO_INT (bLabel1);
6 STRUCTURED TEXT LANGUAGE

6

6.1 Configuration
Programs written in ST language consist of operators and control statements.

Each statement must end with a semicolon ";".

Spaces, tabs, and line feeds can be inserted between an operator and data.

Comments can be inserted into a program. Enclose a comment statement with "(*" and "*)".

Program components
An ST program consists of the following components.

 • Write delimiters, operators, and reserved words in one-byte characters.

 • For details on the reserved words, refer to the following.

 GX Works3 Operating Manual

Item Example Reference

Delimiter ;, (,) Page 56 Delimiters

Operator +, -, <, >, = Page 56 Operators

Reserved word Control statement IF, CASE, WHILE, RETURN Page 57 Control statements

Device X0, Y10, M100, ZR0 MELSEC iQ-R CPU Module User's Manual (Application)

Data type BOOL, DWORD Page 35 Data Types

Standard function ADD, REAL_TO_STRING_E MELSEC iQ-R Programming Manual (Instructions,

Standard Functions/Function Blocks)

Constant 123, "abc" Page 68 Constants

Label Switch_A Page 69 Labels and devices

Comment (*Turn on.") Page 70 Comments

Other symbols One-byte space, line feed code, TAB code

Assignment statement

Select statement

Function call statement

Function block call statement

End of the statement

Space

Tab

Linefeed

Comment
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 55

56
Delimiters
ST language supports the following delimiters to make the program structure clear.

Operators
The following table lists the operators, applicable data types, and operation result data types used in ST programs.

*1 WSTRING data type Unicode string cannot be specified.

The following table lists the operators in descending order of priority.

 • If one expression includes multiple operators with the same priority, operation is performed in order from the leftmost

operator.

 • Up to1024 operators can be used in a single expression.

Symbol Description

() Parenthesized expression

[] Specification of array element

. (period) Specification of structure or function block members

, (comma) Argument separation

: (colon) Device specifier

; (semicolon) Termination of statement

" (double quotation mark) Notation of Unicode string

' (single quotation mark) Notation of string (ASCII, Shift JIS)

.. (two periods) Specification of integer range

Operator Applicable data type Operation result type

*, /, +, - ANY_NUM ANY_NUM

<, >, <=, >=, =, <> ANY_ELEMENTARY*1 Bit

MOD ANY_INT ANY_INT

AND, &, XOR, OR, NOT ANY_BIT ANY_BIT

** ANY_REAL (base)

ANY_NUM (exponent)

ANY_REAL

Operator Description Example Priority

() Parenthesized expression (2+3)*(4+5) 1

Standard function () Argument of standard function CONCAT('AB','CD') 2

** Exponentiation 3.0**4 3

- Sign inversion -10 4

NOT Bit type complement NOT TRUE

* Multiplication 10*20 5

/ Division 20/10

MOD Remainder 17 MOD 10

+ Addition 1.4+2.5 6

- Subtraction 3-2

<, >, <=, >= Comparison 10>20 7

= Equality T#26h=T#1d2h 8

<> Inequality 8#15<>13

&, AND AND operation TRUE AND FALSE 9

XOR XOR operation TRUE XOR FALSE 10

OR OR operation TRUE OR FALSE 11
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

Control statements
The following table lists the control statements that can be used in ST programs.

Write control statements in one-byte characters.

Item Description Reference

Assignment statement Assignment statement Page 58 Assignment statement

Subprogram control statement Function block and function call statements Page 59 Subprogram control statements

RETURN statement

Select statement IF statement (IF THEN, IF ELSE, IF ELSIF) Page 61 Select statements

CASE statement

Iteration statement FOR statement Page 62 Iteration statements

WHILE statement

REPEAT statement

EXIT statement
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 57

58
Assignment statement

When using an array type label and structure label, note the data types of the left side and right side of the assignment

statement.

For array type labels, the data type and the number of elements need to be the same between the left and right sides. When

using array type labels, do not specify elements.

Ex.

intAry1:=intAry2;

For structure labels, the data type of the structure needs to be the same between the left and right sides.

Ex.

dutVar1:=dutVar2;

■Automatic conversion of data type
When assignment or arithmetic operational expressions between different data types is described in ST language, one data

type may be converted automatically.

Ex.

Example of automatic conversion

Type conversion is performed in assignment statements, VAR_INPUT part where input argument is passed to function blocks

and functions (including instruction, standard functions, and standard function blocks), and arithmetic operational

expressions.

To prevent data from being lost during type conversion, conversion is performed only from a smaller size data type to a larger

size data type. Type conversion is performed for the following data types among the primitive data types.

*1 When 16-bit data ("Word [signed]" or "Word [unsigned]/bit string [16 bits]") is passed to the input argument of which data type is
ANY_REAL, the data is automatically converted to "Single-precision real number".

*2 When data ("Word [unsigned]/bit string [16 bits]") is passed to the input argument of which data type is ANY32, the data is automatically
converted to "Double word [unsigned]/bit string [32 bits]".

For the data types other than the above, use the type conversion functions.

Use the type conversion functions for the following conversions as well.

 • Type conversion between integral data types with different signs

 • Type conversion between data types both of which lose data

For the precautions on assignment of the arithmetic operation result, refer to the following.

Page 63 When the result of an arithmetic operation is assigned

Format Description Example

<Left side>:=<Right

side>;

This statement assigns the result of the right side expression to the label or device on the left side.

The data types of the result of the right side expression and the left side need to be the same.

intV1:=0;

intV2:=2;

dintLabel1 := intLabel1;

// Assignment statement: Automatically convert the INT type variable (intLabel1) to a DINT type variable, and assign it to the DINT type variable (dintLabel1).

dintLabel1 := dintLabel2 + intLabel1;

// Arithmetic operational expression: Automatically convert the INT type variable (intLabel1) to a DINT type variable, and perform addition in DINT type.

DMOV(TRUE, wordLabel1, dwordLabel1);

// Instruction, function, and function block call statement: Automatically convert the WORD type input argument (wordLabel1) to a DWORD type variable, and

transfer the data.

Data type Description

Word [signed] When converting to "Double word [signed]", the data is automatically sign extended.

When converting to "Single-precision real number" or "Double-precision real number", the data is automatically

converted to the same value as the integer before conversion.*1

Word [unsigned]/bit string [16 bits] When converting to "Double word [unsigned]/bit string [32 bits]" or "Double word [signed]", the data is automatically

zero extended.*2

When converting to "Single-precision real number" or "Double-precision real number", the data is automatically

converted to the same value as the integer before conversion.*1

Double word [signed] When converting to "Double-precision real number", the data is automatically converted to the same value as the

integer before conversion.Double word [unsigned]/bit string [32

bits]

Single-precision real number When converting to "Double-precision real number", the data is automatically converted to the same value.
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

Subprogram control statements

■Function block call statement

The following table lists the symbols used in the arguments of the function block call statements and the expressions that can

be assigned.

The execution result of a function block is stored by specifying an output variable after the instance name with a period "." and

assigning the result to the specified variable.

■Function call statement

The execution result of a function is stored by assigning it to a variable.

A user-defined function which returns no value or a function including VAR_OUTPUT in parameters of the call statement can

be executed as a statement by describing it after ";" (semicolon).

Format Description

Instance name (input variable1:=variable1,...output

variable1=>variable2,...);

Enclose the assignment statements to the input and output variables in '()' after the instance name.

When using multiple variables, delimit individual assignment statements with a comma ','.

Instance name.input variable1:=variable1;

Instance name();

Variable2:=instance name.output variable1;

List the assignment statements to input and output arguments between function block call

statements.

Type Description Attribute Symbol used Assignable expression

VAR_INPUT Input variable None, or RETAIN := All expressions

VAR_OUTPUT Output variable None, or RETAIN => Only variables

VAR_IN_OUT Input/output variable None := All expressions

VAR_PUBLIC External variable None, or RETAIN Cannot be specified.

Function block FB definition Example

Having one input variable and one output variable FB name: FBADD

FB instance name: FBADD1

Input variable1: IN1

Output variable1: OUT1

FBADD1(IN1:= Input1);

Output1 := FBADD1.OUT1;

Having three input variables and two output variables FB name: FBADD

FB instance name: FBADD1

Input variable1: IN1

Input variable2: IN2

Input variable3: IN3

Output variable1: OUT1

Output variable2: OUT2

FBADD1(IN1:= Input1 ,IN2:= Input2 ,IN3:= Input3);

Output1 := FBADD1.OUT1;

Output2 := FBADD1.OUT2;

Format Description

Function name (variable1,variable2,...); Enclose arguments in "()" following the function name.

When using multiple variables, delimit them with a comma ",".

Function Example

Having one input variable (example: ABS) Output1 := ABS(Input1);

Having three input variables (example: MAX) Output1 := MAX(Input1 , Input2 , Input3);

Having EN/ENO (except for standard functions)

(example: MAX_E)

Output1 := MAX_E(boolEN , boolENO , Input1 , Input2 , Input3);

Standard function (example: MOV) boolENO := MOV(boolEN , Input1 , Output1);

(The execution result of the function is ENO, and the first argument (variable1) is EN.)
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 59

60
■RETURN statement

Control statement Format Description Example

■RETURN RETURN; The statement is used to terminate a program, function block, or

function during operation.

When the RETURN statement is used in a program, control jumps to

the step next to the last statement in the program.

When the RETURN statement is used in a function block, control

returns from the function block.

When the RETURN statement is used in a function, control returns from

the function.

A single RETURN statement uses one point of the pointer type label in

the system.

IF bool1 THEN

RETURN;

END_IF;
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

Select statements

Control
statement

Format Description Example

■IF THEN IF<boolean

expression>THEN

<statement>;

END_IF;

The statement is executed if the boolean expression (conditional

formula) is TRUE. The statement is not executed if the boolean

expression is FALSE.

Any expression can be used for the boolean expression if it returns

TRUE or FALSE as the boolean operation result of a single bit variable

expression or a complicated expression including many variables.

IF bool1 THEN

intV1 := intV1 + 1;

END_IF;

■IF...ELSE IF<boolean

expression>THEN

<statement 1>;

ELSE

<statement 2>;

END_IF;

Statement 1 is executed if the boolean expression (conditional formula)

is TRUE.

If the boolean expression is FALSE, statement 2 is executed.

IF bool1 THEN

intV3 := intV3 + 1;

ELSE

intV4 := intV4 + 1;

END_IF;

■IF...ELSEIF IF<boolean expression

1>THEN

<statement 1>;

ELSEIF<boolean

expression 2>THEN

<statement 2>;

ELSEIF<boolean

expression 3>THEN

<statement 3>;

END_IF;

Statement 1 is executed if boolean expression 1 (conditional formula) is

TRUE. If boolean expression 1 is FALSE and boolean expression 2 is

TRUE, statement 2 is executed.

If boolean expressions 1 and 2 are FALSE and boolean expression 3 is

TRUE, statement 3 is executed.

IF bool1 THEN

intV1 := intV1 + 1;

ELSIF bool2 THEN

intV2 := intV2 + 2;

ELSIF bool3 THEN

intV3 := intV3 + 3;

END_IF;

■CASE CASE<integer

expression>OF

<selected integer 1>:

<statement 1>;

<selected integer 2>:

<statement 2>;

<selected integer n>:

<statement n>;

ELSE

<statement n+1>;

END_CASE;

The statement that has a selected integer value matching the value of

the integer expression (conditional formula) is executed, and if no

statement has a matching value, the statement following the ELSE

statement is executed.

The CASE statement can be used to execute a select statement

according to a single integer value or the integer value of the result of a

complicated expression.

CASE intV1 OF

1:

bool1 := TRUE;

2:

bool2 := TRUE;

ELSE

intV1 := intV1 + 1;

END_CASE;
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 61

62
Iteration statements

Control
statement

Format Description Example

■FOR...DO FOR<iteration variable

initialization>

TO<final value>

BY<increase

expression>DO

<statement>;

END_FOR;

Data to be used as an iteration variable is initialized.

One or more statements between the DO statement and the END_FOR

statement are executed repeatedly, adding or subtracting the initialized

iteration variable according to the increase expression until the final

value is exceeded.

The iteration variable after the FOR...DO statement is completed

retains the value at the end of the processing.

FOR intV1 := 0

TO 30

BY 1 DO

intV3 := intV1 + 1;

END_FOR;

■WHILE...DO WHILE<boolean

expression>DO

<statement>;

END_WHILE;

One or more statements are executed while the boolean expression

(conditional formula) is TRUE.

The boolean expression is determined before execution of the

statement and, if it is FALSE, any statement in the DO...END_WHILE

statement is not executed. Since <boolean expression> in the WHILE

statement is only necessary to return TRUE or FALSE as the result,

any expression that can be specified in <boolean expression> of the IF

statement can be used.

WHILE intV1 = 30 DO

intV1 := intV1 + 1;

END_WHILE;

■REPEAT...UNTIL REPEAT

<statement>;

UNTIL<boolean

expression>

END_REPEAT;

One or more statements are executed while the boolean expression

(conditional formula) is FALSE.

The boolean expression is determined after execution of the statement

and, if the value is TRUE, any statement in the REPEAT...UNTIL

statement is not executed. Since <boolean expression> in the REPEAT

statement is only necessary to return TRUE or FALSE as the result,

any expression that can be specified in <boolean expression> of the IF

statement can be used.

REPEAT

intV1 := intV1 + 1;

UNTIL intV1 = 30

END_REPEAT;

■EXIT EXIT; This statement can be used only within an iteration statement to

terminate the iteration statement in the middle of processing.

When the EXIT statement is reached during execution of the iteration

loop, the iteration loop processing after the EXIT statement is not

executed. The program execution continues from the line next to the

one where the iteration statement was terminated.

FOR intV1 := 0

TO 10

BY 1 DO

IF intV1 > 10 THEN

EXIT;

END_IF;

END_FOR;
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

Precautions

■When an assignment statement is used
 • Up to 255 characters can be assigned to a string. If characters are assigned exceeding the valid range, a conversion error

occurs.

 • Timer type and counter type contacts and coils cannot be used at the left side of an assignment statement.

 • Instances of function blocks cannot be used at the left side of an assignment statement. Use the input variable, output

variable, or external variable of an instance.

■When the step relay (S) or SFC block device (BL) is used
If the step relay (S) or SFC block device (BL) is used at the left side of an assignment statement or as an input argument of a

function or function block, a conversion error may occur. If an error occurs, change the assignment statement.

Ex.

The following is the example of rewriting.

In addition, to use the digit-specified step relay (S) or the step relay with block specification (BL\S), the data size must be

specified correctly. Since the step relay (S) and the step relay with block specification (BL\S) are not targeted for auto data

type conversion, a conversion error may occur if the data size are not the same.

Ex.

The following is the example of rewriting.

■When the result of an arithmetic operation is assigned
When assigning the result of an arithmetic operation to a data type variable with larger data size, convert the variable of the

arithmetic operational expression to the data type of the left side in advance.

Ex.

To assign the arithmetic operation result with a data size of 16 bits (INT type) to the 32-bit data type (DINT type):

The result of the arithmetic operation will be the same data type as the input operand. For this reason, if the operation result of

varInt1*10 in the above program exceeds the INT type range (-32768 to 32767), the operation result of overflow or underflow

is assigned to varDint1.

In this case, convert the operand of the operational expression to the data type of the left side in advance.

Before change After change

M0 := S0; IF S0 THEN

M0 := TRUE;

ELSE

M0 := FALSE;

END_IF;

Before change After change

(*Conversion error because K4S0 is 16 bits and D0:UD is 32 bits*)

D0:UD := K4S0;

(*Conversion error because BL1\K4S10 is 16 bits and the second argument of

DMOV is 32 bits*)

DMOV(TRUE,BL1\K4S10,D100);

(*Assign data to the 16-bit device.*)

D0 := K4S0;

(*Specify 32-bit data for DMOV.*)

DMOV(TRUE, BL1\K8S10, D100:UD);

varDint1 := varInt1 * 10; //The varInt1 is an INT type variable, and the varDint1 is a DINT type variable.

varDint2 := INT_TO_DINT(varInt1); //An INT type variable is converted to a DINT type variable.

varDint1 := varDint2 * 10; //Multiplication is performed in DINT type, and the operation result is assigned.
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 63

64
■When a sign inversion operator is used in the arithmetic operational expression
If a sign inversion operator is used for the minimum value of each data type, the value remains unchanged.

For example, the minimum value of INT type data will be -(-32768) = -32768.

If a sign inversion operator is used for variables targeted for automatic data type conversion, an intended operation result may

not be obtained.

Ex.

When the value of varInt1 (INT type) is -32768 and the value of varDint1 (DINT type) is 0

In this program, the value of (-varInt1) remains unchanged. Therefore, the value, -32768, is assigned to varDint2.

To use a sign inversion operator in an arithmetic operational expression, automatically convert data type before the arithmetic

operation or do not use a sign inverted operator in the program.

Ex.

When data type is automatically converted before the arithmetic operation

Ex.

When a sign inversion operator is not used

■When the data type is converted from single-precision real number to double-precision real
number

When the type conversion function, REAL_TO_LREAL, is executed, an error may occur in the conversion result.

Consequently, when the data type is automatically converted or when a function with a return value of real number type (such

as SIN function) is used as the right side of an assignment statement or an operand of arithmetic operational expression, an

intended operation result may not be obtained.

Ex.

An error occurs.

In the above program, the data type of the return value of ABS(varReal1) is single-precision real number. Since the return

value is converted to a double-precision real number and assigned to varReal1, an error occurs.

Create a program using a function with the data type same as the assignment target.

Ex.

No error occurs.

varDint2 := -varInt1 + varDint1;

varDint3 := varInt;

varDint2 := -varDint3 + varDint1;

varDint2 := varDint1 - varInt1

varReal1 := -1234.567;

varLReal1 := ABS(varReal1);

varLReal2 := -1234.567;

varLReal1 := ABS(varLReal2);
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

■When a bit type label is used
Once the boolean expression (conditional formula) is established in a select or iteration statement and if a bit type label is set

to on in <statement>, the state of the label will be always on.

Ex.

Program that keeps the label status on

To prevent the label from being always on, add a program that turns off the bit type label as shown below.

Ex.

Program that avoids the label from being always on

*1 The above program can also be described as follows.
bLabel2:=bLabel1;
or
OUT(bLabel1,bLabel2);
Note however that if the OUT instruction is used in the <statement>, the program will be in the same state as a program that keeps the
label status on.

■When a timer function block or counter function block is used
In a select statement, a boolean expression (conditional formula) differs from the execution conditions of timer function blocks

or counter function blocks.

Ex.

Timer function block

Program example before change

Program example after change

Ex.

Counter function block

Program example before change

Program example after change

The above examples of programs before change cause problems because the statement related to the timer or counter is not

executed unless the select statement is established.

To operate the timer or counter on the basis of the bLabel1 condition and bLabel1 AND condition, do not use control

statements but use only function blocks.

The timer and counter can be operated by using the programs after change.

ST program Ladder program performing the processing equivalent to ST program

IF bLabel1 THEN

bLabel2 := TRUE;

END_IF;

ST program*1 Ladder program performing the processing equivalent to ST program

IF bLabel1 THEN

bLabel2 := TRUE;

ELSE

bLabel2 := FALSE;

END_IF;

IF bLabel1 THEN

 TIMER_100_FB_M_1 (Coil := bLabel2, Preset := wLabel3, ValueIn := wLabel4, ValueOut => wLabel5, Status => bLabel6);

END_IF;

(*When bLabel1 is on and bLabel2 is also on, counting starts.*)

(*When bLabel1 is on and bLabel2 is off, the counted value is cleared.*)

(*When bLabel1 is off and bLabel2 is on, counting stops. The counted value is not cleared.*)

(*When bLabel1 is off and bLabel2 is also off, counting stops. The counted value is not cleared.*)

TIMER_100_FB_M_1 (Coil := (bLabel1 & bLabel2), Preset := wLabel3, ValueIn := wLabel4 , ValueOut => wLabel5, Status => bLabel6);

IF bLabel1 THEN

 COUNTER_FB_M_1 (Coil := bLabel2, Preset := wLabel3, ValueIn := wLabel4, ValueOut => wLabel5, Status => bLabel6);

END_IF;

(*When bLabel1 is on and bLabel2 is on/off, the value is incremented by one.*)

(*When bLabel1 is off and bLabel2 is on/off, the value is not counted.*)

(*The counting operation does not depend on the on/off status of bLabel1.*)

COUNTER_FB_M_1 (Coil := (bLabel1 & bLabel2), Preset := wLabel3, ValueIn := wLabel4, ValueOut => wLabel5, Status => bLabel6);
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 65

66
■When a FOR...DO statement is used
 • A structure member or array element cannot be used for the iteration variable.

 • Match the type used in the iteration variable with the types of <final value expression> and <increase expression>.

 • <Increase expression> can be omitted. If omitted, <increase expression> is assumed to be 1.

 • If 0 is assigned to <increase expression>, the portions after the FOR statement may no longer be executed or an infinite

loop may occur.

 • In the FOR...DO statement, the iteration variable count processing is performed after execution of <statement>in the FOR

statement. If the count processing is executed in such a way that it exceeds the maximum value of the iteration variable

data type or is below the minimum value, an infinite loop occurs.

■When instructions that are executed at the rising or falling edge are used
 • The following table lists operations when instructions that are executed at the rising or falling edge are used in the IF or

CASE statement.

*1 On the falling edge (on to off), the instruction is not executed because the condition of the IF or CASE statement is not satisfied.

Ex.

When the PLS instruction (execution condition: rising edge) is used in the IF statement

Condition Operation result

Conditional
formula of IF or
CASE statement

Instruction
execution
condition (EN)

On/off
determination
result of the
instruction in the
last scan

On/off
determination
result of the
instruction

Rising edge
execution
instruction

Falling edge
execution
instruction

TRUE or CASE match TRUE On On Not executed Not executed

Off On Executed Not executed

FALSE On Off Not executed Executed

Off Off Not executed Not executed

TRUE or CASE

mismatch

TRUE On Off Not executed Not executed*1

Off Off Not executed Not executed

FALSE On Off Not executed Not executed*1

Off Off Not executed Not executed

IF bLabel0 THEN

PLS(bLabel1, bLabel10);

END_IF;

(1) When bLabel0 is off (the conditional formula of the IF statement is FALSE), the on/off determination result will be off. The PLS instruction is not executed.

(The bLabel10 remains off.)

(2) When bLabel0 is on (the conditional formula of the IF statement is TRUE) and bLabel1 is off (the instruction execution condition is off), the on/off

determination result will be off. The PLS instruction is not executed. (The bLabel10 remains off.)

(3) When bLabel0 is on (the conditional formula of the IF statement is TRUE) and bLabel1 is also on (the instruction execution condition is on), the on/off

determination result will be off to on (rising edge). The PLS instruction is executed. (The bLabel10 is on for one scan.)

ON

OFF

OFF

OFF

OFF

ON

(1) (2)

ON

ON

ON

(3)

On/off
determination
result

bLabel0

bLabel10

bLabel1

1 scan
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

 • To execute the rising or trailing edge execution instruction in the iteration statement (FOR, WHILE, or REPEAT statement),

use the edge relay (V) or perform index modification. In this case, one point of the edge relay (V) is used for each

instruction that uses the edge relay (V) in the system. For this reason, secure the edge relay (V) for the number of

instructions used in addition to the number of points used in the iteration statement.

Ex.

When the rising and falling edge execution instructions are used in the FOR statement

■When the master control instruction is used
Operations when the master control is off will be as follows.

 • A statement in the select statement (IF or CASE statement) or iteration statement (FOR, WHILE, or REPEAT statement)

performs no processing.

 • For a statement outside the select statement or iteration statement, no processing is performed if it is an assignment

statement, and a statement itself is not executed if it is other than assignment statement.

Ex.

Statement in the select statement (IF statement)

Ex.

Statement (bit assignment statement) outside the select statement or iteration statement

Ex.

Statement (OUT instruction) outside the select statement or iteration statement

Example of using the edge relay (V) in one location

(The edge relay (V) is used up to a total of 11 points (V0 to V10 for the INC instruction).)

FOR Z0 := 0 TO 9 BY 1 DO

INC(EGP(M100Z0 , V0Z0) , D100Z0);

END_FOR;

Example of using the edge relay (V) in two locations

(The edge relay (V) is used up to a total of 22 points (V0 to V10 for the INC instruction, V11 to V21 for the DEC instruction).)

FOR Z0 := 0 TO 9 BY 1 DO

INC(EGP(M100Z0 , V0Z0) , D100Z0);

DEC(EGF(M200Z0 , V11Z0) , D200Z0);

END_FOR;

MC(M0 , N1 , M1); //Master control is off.

IF M2 THEN

M3 := M4; // M3 retains the value in the last scan because no processing is performed when the master control is off.

END_IF;

M20 := MCR(M0, N1);

MC(M0 , N1 , M1); //Master control is off.

M3 := M4; //M3 retains the value in the last scan because no processing is performed when the master control is off.

M20 := MCR(M0, N1);

MC(M0 , N1 , M1); //Master control is off.

OUT(M2, M3); //M3 turns off because the instruction is not executed when the master control is off.

M20 := MCR(M0, N1);
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 67

68
Constants

Notation of constants
The following table lists the notations of strings in ST programs.

For the notations of constants other than the above, refer to the following.

Page 43 Constants

Data type Notation Example

String STRING Enclose a string (ASCII, Shift JIS) in single quotation marks (' '). Stest:='ABC';

String [Unicode] WSTRING Enclose a Unicode string in double quotation marks (" "). Stest:="ABC";
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

Labels and devices

Specification method
Labels and devices can be directly described on ST programs. Labels and devices can be used for the left or right side of an

expression or as an argument or return value of a standard function/function block.

For the applicable labels, refer to the following.

Page 33 LABELS

For the applicable devices, refer to the following.

 MELSEC iQ-R CPU Module User's Manual (Application)

■Notation of devices with a type specifier
A word device can be used as any data type by adding a device type specifier to its name.

The following devices can use a device type specifier.

 • Data register (D)

 • Link register (W)

 • Link direct device (J\W

 • Module access device (U\G)

 • File register (R/ZR)

 • Refresh data register (RD)

A device type specifier cannot be added to a digit-specified or index-modified device.

■Device specification method
Devices can be specified in the following methods.

 • Index modification

 • Bit specification

 • Digit specification

 • Indirect specification

For details, refer to the following.

 MELSEC iQ-R CPU Module User's Manual (Application)

 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

Device specifier Data type Example Description of example

None Generic data type ANY16.

Word [signed], when only devices are used in such as an arithmetic

operational expression.

However, when it is specified as a device without a type specifier in a

FUN/FB argument, it becomes a argument-defined data type.

D0 D0 without a type specifier

:U Word [unsigned]/bit string [16 bits] D0:U D0 specified as "Word [unsigned]/bit string

[16 bits]"

:D Double word [signed] D0:D D0 and D1 specified as "Double word

[signed]"

:UD Double word [unsigned]/bit string [32 bits] D0:UD D0 and D1 specified as "Double word

[unsigned]/bit string [32 bits]"

:E Single-precision real number D0:E D0 and D1 specified as "Single-precision

real number"

:ED Double-precision real number D0:ED D0, D1, D2, and D3 specified as "Double-

precision real number"
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 69

70
Precautions
 • The pointer type cannot be used in ST programs.

 • When the timer, counter, or retentive timer device is used as current value, the data type will be "Word [unsigned]/bit string

[16 bits]". When the long timer, long counter, or long retentive timer device is used as current value, the data type will be

"Double word [unsigned]/bit string [32 bits]".

 • When performing assignment using digit specification, match the data type between the left and right sides.

Ex.

D0:=K5X0;

In this example, a program error occurs because K5X0 is the double word type and D0 is the word type.

 • If the right side is greater than the left side when performing assignment using digit specification, data is transferred to

within the range of the number of applicable points of the left side.

Ex.

K5X0:=2#1011_1101_1111_0111_0011_0001;

In this example, K5X0 has 20 applicable points and therefore 1101_1111_0111_0011_0001 (20 digits) is assigned to K5X0.

 • When using the current value (such as TNn) of the counter (C), timer (T), or retentive timer (ST) as a type other than "Word

[unsigned]/bit string (16 bits)", or when using the current value (such as LTNn) of the long counter (LC), long timer (LT), or

long retentive timer (LST) as a type other than "Double word [unsigned]/bit string (32 bits)", use the type conversion

functions.

Ex.

varInt:=WORD_TO_INT(T0);(*A type conversion function is used.*)

 • If a coil (TC, STC, LTC, LSTC, CC, LCC) of timer and counter devices is used at the right side of an assignment statement

or as an input argument of a function or function block, it operates as a contact (TS, STS, LTS, LSTS, CS, LCS).

 • To use a coil of timer or counter as an input, use a timer type or counter type label.

Ex.

Timer device and timer type label

M1 := TC0; (*Assign a value of the contact (TS0) to M1.*)

M2 := INV(TC1); (*Assign the inversion result of the contact (TS1) to M2.*)

M1 := tLabel0.C; (*Assign a value of the coil of the timer type label, tLabel0, to M1.*)

M2 := INV(tLabel1.C); (*Assign the inversion result of the coil of the timer type label, tLabel0, to M1.*)

Comments
The following table lists the comments that can be used in ST programs.

Do not write a comment containing an end symbol in a multiple-line comment.

Type Symbol Description Example

Single-line comment // The portion from the start symbol "//" to the end of the line is regarded

as a comment.

//comment

Multiple-line comment (**) The portion from the start symbol "(*" to the end symbol "*)" is regarded

as a comment.

A line feed can be inserted in a comment.

■No line feed

(*comment*)

■With a line feed

(*line-1 comment

line-2 comment*)

/**/ The portion from the start symbol "/*" to the end symbol "*/" is regarded

as a comment.

A line feed can be inserted in a comment.

■No line feed

/*comment*/

■With a line feed

/*line-1 comment

line-2 comment*/
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

7

7 FBD/LD

FBD/LD (function block diagram/ladder diagram) is a graphic language which describes programs by connecting blocks that

perform predefined processing, variable elements, and constant elements along the flow of data and signals.

This chapter describes the operation and specifications of the FBD/LD. For the operation method of the

engineering tool for creating an FBD/LD program, refer to the following.

 GX Works3 Operating Manual

7.1 Configuration
The following are the programs written in FBD/LD.

In FBD/LD programs, data flows from the output point of a function block, function, variable (label or device), or constant to the

input point of another function block or variable.

(1) Worksheet

(2) LD element

(3) FBD element

(4) Common element

(5) Connection point

(6) Connection line

(3)

(2)

(1)

(4)

(6)

(5)
7 FBD/LD
7.1 Configuration 71

72
Program elements

FBD elements
The following table lists FBD elements consisting an FBD/LD program.

■When the step relay (S) or SFC block device (BL) is used
If the step relay (S) or SFC block device (BL) is used as a variable element, a conversion error may occur. If an error occurs,

change the variable element to a contact element.

Ex.

The following is the example of rewriting.

In addition, to use the digit-specified step relay (S) or the step relay with block specification (BL\S), the data size must be

specified correctly. Since the step relay (S) and the step relay with block specification (BL\S) are not targeted for auto data

type conversion, a conversion error may occur if the data size are not the same.

Ex.

The following is the example of rewriting.

Item Description

Variable Stores a value. A specific data type is assigned to each variable, and only data of the assigned

data type are stored.

Labels and devices can be specified as a variable.

Constant Outputs a specified value.

Function (FUN) Executes a function.

• How to create functions (GX Works3 Operating Manual)

• Standard functions (MELSEC iQ-R Programming Manual (Instructions, Standard Functions/

Function Blocks))

Function block (FB) Executes a function block.

• How to create function blocks (GX Works3 Operating Manual)

• Standard function blocks (MELSEC iQ-R Programming Manual (Instructions, Standard

Functions/Function Blocks))

• Module function blocks (Function Block Reference for the module used)

Before change After change

Before change After change
7 FBD/LD
7.1 Configuration

7

■Data type of constant elements
The data type of the value input to a constant is not determined when the value is input. It is determined when the constant

element is connected to another FBD element with a connection line. The data type will be the same as that of the connected

FBD element.

Ex.

When the constant value is 1

The possible data types are BOOL, WORD, DWORD, INT, DINT, REAL, and LREAL, but the data type of the input value

cannot be determined at this point. The data type is determined when the constant is connected to another FBD element.

■Automatic conversion of data type
If the data types differ between connected elements, one data type may be converted automatically.

To prevent data from being lost during type conversion, conversion is performed only from a smaller size data type to a larger

size data type. The data type automatic conversion processing in FBD/LD is same as that in ST language. For details, refer to

the following.

Page 58 Automatic conversion of data type

(1) The data type has not been determined.

(2) INT data type

(3) INT data type(1)

(2) (3)
7 FBD/LD
7.1 Configuration 73

74
■Input/output points of a function
 • Connect all input points of a function with another FBD element.

 • The data type is assigned to each input variable and output variable of a function. Match the data type of an element

connected to the input point or output point with that of the input variable or output variable.

 • Connect the output variable (except ENO) of an CPU module instruction or module dedicated instruction to the input

variable of a function (or function block) via a variable element.

 • When connecting two functions, always connect a function with EN to a function with EN so that the the functions do not

use an undefined value. (Do not connect a function with EN to a function without EN.) In this case, connect ENO of the first

function to EN of the second function.

LD elements
The following table lists the LD elements that can be used in FBD/LD programs.

■AND operation and OR operation of contact elements
At each contact, an AND operation or OR operation is performed depending on the connection status, and the operation

result is output.

 • Series connection (1): An AND operation is performed with the previous operation result.

 • Parallel connection (2): An OR operation is performed with the previous operation result.

(1) Connect ENO to EN.

Item Description

Left rail A start point of ladder program.

The output of the left rail is always on.

Normally open contact Energized when the specified device or label is on.

Normally closed contact Energized when the specified device or label is off.

Rising edge pulse Energized on the rising edge (off to on) of the specified device or label.

Falling edge pulse Energized on the falling edge (on to off) of the specified device or label.

Negated rising edge pulse Energized when the specified device or label is off, on, or on the falling edge (on to off).

Negated falling edge pulse Energized when the specified device or label is off, on, or on the rising edge (off to on).

Coil Outputs the operation result to the specified device or label.

Inverse coil When the operation result turns off, the specified device or label turns on.

Set coil When the operation result turns on, the specified device or label turns on.

The device or label keeps on state even after the operation result turns off.

Reset coil When the operation result turns on, the specified device or label turns off.

If the operation result is off, the status of the device or label does not change.

(1) Contact connected in series

(2) Contact connected in parallel

(1)

(1)

(2)

()
7 FBD/LD
7.1 Configuration

7

Common elements
The following table lists the common elements that can be used in FBD/LD programs.

*1 These elements cannot be used in the Zoom editor of SFC programs.

■Jump element
 • If the timer whose coil is on is jumped, the time cannot be measured correctly.

 • A jump label can be located before the jump element in the program sequence. If located, create a program so that the

watchdog timer setting value is not exceeded. (How to exit from a loop must be considered.)

 • Specify a pointer type local label for a jump element and a jump label. The pointer devices cannot be used.

 • The CJ, SCJ, and JMP instructions (for pointer branch) cannot be used. Use a jump element when jump processing is

required.

 • Processing cannot be jumped to/from the outside of the program block.

*1 Branching by using the BREAK instruction is included.

Item Description

Jump*1 Jumps the execution processing to a jump element. Processing between this element and a jump

label is not performed.

Whether to perform jump processing or not is controlled by inputting on/off information to the

element.

On: Jump processing performed

Off: Jump processing not performed

Jump label*1 A jump destination of a jump element in the same program. When the jump processing is

performed, the program continues from the processing located after the jump label.

Connector Used as a substitute for a connection line.

Processing moves to a connector element used as a pair.

One or more input connectors can be used as a pair of one output connector.

Return*1 Stops the execution processing after this element. Use the element not to execute the program,

functions, and function blocks after the element.

Whether to perform return processing or not is controlled by inputting on/off information to the

element.

On: Return processing performed

Off: Return processing not performed

Comment Used to write a comment.

Jump related operation Availability

Jumping to the outside of the program block*1 Not supported

Jumping from the outside of the program block*1 Not supported

Calling a subroutine program Supported

Being called as a subroutine program Not supported
7 FBD/LD
7.1 Configuration 75

76
■Return element
 • The operation of a return element differs depending on the POU (program, function, or function block) used.

 • If a return element is used in the function block whose type is a macro type, do not allocate multiple function blocks with

same instance name.

 • When a program where a return element is used is converted, a local label is automatically registered. The following

restrictions apply to those labels.

*1 If the program is converted again after the label is changed or deleted, another local label is registered.

■Connector element
A connector element is used to place the program within the area to be displayed in the FBD/LD editor or to be printed.

POU used Description

Program Execution of the program is stopped.

Function Execution of the function is stopped, and processing returns to the step next to the instruction that called the function.

Function block Execution of the function block is stopped, and processing returns to the step next to the instruction that called the

function block.

Operation to the label registered automatically Availability

Changing a label name Not available*1

Changing a data type Not available

Changing a class Not available

Deleting a label Not available*1

Changing a registration line Available
7 FBD/LD
7.1 Configuration

7

Connection line
A connection line is a line that connects the end points of FBD element, LD element, and common element.

When connected, the value is passed from the left end to the right end of the line. The data types of the program elements

connected must be identical, or support automatic data type conversion.

Connection point
A connection point is an end point of FBD element, LD element, and common element for connecting them to create an FBD/

LD program.

The left-side end point is for input, and the right-side end point is for output.

When connected, the connection point is hidden.

■I/O point inversion
The input value to a program element or the output value from a program element can be inverted at the connection point.

The connection point where the value is inverted (FALSE to TRUE or TRUE to FALSE) is displayed with a black circle.

The value of the following data types can be inverted: BOOL, WORD, DWORD, ANY_BIT, and ANY_BOOL.

Item Connection point for input Connection point for output

Contact

Coil

Variable

Constant

Function

The return value of the function is not displayed.

Function block
7 FBD/LD
7.1 Configuration 77

78
Worksheet
A worksheet is a work area for users to create FBD/LD programs, such as inserting program elements and connecting them.

Constant

Notation of constants
The following table lists the notations of strings in FBD/LD programs.

For the notations of constants other than the above, refer to the following.

Page 43 Constants

Labels and devices

Specification method
Labels and devices can be directly described on FBD/LD programs. Labels and devices can be used as an input point or

output point of a program element and an argument or return value of a standard function/function block.

For the applicable labels, refer to the following.

Page 33 LABELS

For the applicable devices, refer to the following.

 MELSEC iQ-R CPU Module User's Manual (Application)

■Notation of devices with a type specifier
A word device can be used as any data type by adding a device type specifier to its name.

The device type specifiers and applicable devices are the same as those for ST programs. For details, refer to the following.

Page 69 Notation of devices with a type specifier

If the data type of a word device is not specified, it will be determined by the device type.

Data type Notation Example

String STRING Enclose a string (ASCII, Shift JIS) in single quotation marks (').

String [Unicode] WSTRING Enclose a Unicode string in double quotation marks (").

Word device Data type

Current value of the timer (TN), current value of the retentive timer (STN), current value of the

counter (CN)

WORD

Current value of the long timer (LTN), current value of the long retentive timer (LSTN), current

value of the long counter (LCN)

DWORD

Long index register (LZ) DINT

Other than above ANY16
7 FBD/LD
7.1 Configuration

7

Precautions

■When labels are used
 • Local devices cannot be used as an array index. To use local devices as an array index, assign the target device to another

device, and specify the assigned device.

■When a timer or counter is used
 • If a coil (TC, STC, LTC, LSTC, CC, LCC) of timer and counter devices is used as an input of a variable, function, or function

block, it operates as a contact (TS, STS, LTS, LSTS, CS, LCS).

 • To use a coil of timer or counter as an input, use a timer type or counter type label.

Ex.

Timer device and timer type label
Assign a value of the contact (TS0) to M1.

Assign the inversion result of the contact (TS1) to M2.

Assign a value of the coil of the timer type label, tLabel0, to M1.

Assign the inversion result of the coil of the timer type label, tLabel0, to M1.
7 FBD/LD
7.1 Configuration 79

80
7.2 Program Execution Order

Execution order of program elements
The execution order of program elements in the FBD/LD editor is determined by the location and connecting status.

(1) Program elements are executed from left to right.

(2) Program elements are executed from top to bottom.

The execution order is displayed under each program element.

(1)

(2)
7 FBD/LD
7.2 Program Execution Order

8

8 SFC PROGRAM

SFC is a program description format in which a sequence of control operations is split into a series of steps to enable a clear

expression of each program execution sequence and execution conditions.

 • This chapter describes the operations and specifications of SFC programs. For details on the information

not described in this chapter, refer to the following.

 GX Works3 Operating Manual

 MELSEC iQ-R CPU Module User's Manual (Application)

The SFC program consists of steps that represent units of operations in a series of machine operations.

In each step, the actual detailed control is programmed.

An SFC program starts at an initial step, executes an action of the next step in due order every time the relevant transition

becomes TRUE, and ends a series of operations at an end step.

X7

Y25

Y22

SM400

M0

X4

T0

M1

X6

Y22

X5

X3

Y20X0 X1

Y21

X2
Tran

Tran

PLS M0

SET

RST

Y23

Y23

SET Y24

TOOUT K20

Y25

Tran

M1

Y24

PLS

RST

Y20

Tran

SM400

SM400

Machining operation
flowchart

Start processing 1 operation unit

Pallet check and
clamping operation 1 operation unit

Unclamping
operation and
workpiece unloading

1 operation unit

Hole making
operation 1 operation unit

End processing 1 operation unit

Workpiece unloading
confirmation

Unclamp confirmation
Conveyer start

Drill up

Drill down

Drill down endpoint

Drill rotation

Pallet clamping

Conveyer start

Pallet unclamping

Drill up endpoint

Clamp confirmation

Always ON

Always ON

Always ON

Start switch
Workpiece
detection

Pallet detection

SFC diagram Ladder diagram of the action or transition of each step
8 SFC PROGRAM
 81

82
It is possible to correspond the controls of the entire facility, mechanical devices of each station, and all machines to the

blocks and steps of the SFC program on a one-to-one basis.

Step transition
control unit for
overall process

Station 1
control unit

Station 2
control unit

Station 3
control unit

Transfer machine

Overall process
(SFC program)

Step transition control unit for
overall process (Block 0)

Station 3 control unit
(Block 3)

Station 1 control unit
(Block 1)

Station 2 control unit
(Block 2)

Transfer machine start
(Initial step)

End (End step)

Station 3 start
(Block 3 start)

Station 2 start
(Block 2 start)

Station 1 start
(Block 1 start)

Start
(Initial step)

Pallet clamping
(Step 1)

Hole making
(Step 2)

(End step)

Start
(Initial step)

Start
(Initial step)

Pallet clamping
(Step 1)

Tapping
(Step 2)

Pallet unclamping
(Step 3)

(End step)

Pallet clamping
(Step 1)

Workpiece unloading
(Step 2)

Pallet unclamping
(Step 3)

(End step)

Repeated

Pallet unclamping
(Step 3)
8 SFC PROGRAM

8

8.1 Specifications
This section lists the performance specifications related to SFC Programs.

 • For the processing time of the SFC program, refer to the following.

 MELSEC iQ-R CPU Module User's Manual (Application)

Item Specifications

Number of executable SFC programs 1

Number of blocks 320 blocks maximum

Number of SFC steps All blocks in total: 16384 maximum

One block alone: 512 maximum

Number of branches 32 branches maximum

Number of simultaneously active steps All blocks in total: 1280 maximum

One block alone: 256 maximum

Number of initial steps 1 per block

Number of actions 4 actions maximum per step

Number of sequential

steps

Action About 32K sequential steps per block

(No restriction on the number per SFC step)

Transition Only one per ladder block
8 SFC PROGRAM
8.1 Specifications 83

84
8.2 Structure

Basic operation
An SFC program starts at an initial step, executes the next step every time the relevant transition becomes TRUE, and ends a

series of operations at an end step.

Up to 4 actions can be created in one step. When multiple actions are created, they are executed in order

from the top. (Page 98 Action)

(1) Initial step

(2) Action

(3) Transition

(4) Normal step

(5) Normal step

(6) End step

1. When starting a block, the program first executes the action (2) of the initial step (1). During execution of the action (2)

of the initial step (1), the program checks whether the transition (3) has become TRUE.

2. The program executes only the action (2) until the transition (3) becomes TRUE. When the transition (3) becomes

TRUE, the program ends the action (2) of the initial step (1) and executes the next normal step (4).

3. After execution of the action of the normal step (4), the program checks whether the next transition has become TRUE.

If the next transition does not become TRUE, the program repeats the execution of the action of the normal step (4).

4. When the transition becomes TRUE, the program ends the action of the step (4) and executes the next step (5).

5. Every time the transition condition is satisfied, the program executes the next step and ends the block when it finally

transitions to the end step (6).

(1)

(4)

(3)

(2)

(5)

(6)
8 SFC PROGRAM
8.2 Structure

8

Block
A block is a unit showing a series of operation consisting of steps and transitions.

Up to 320 blocks can be created in an SFC program.

A block begins with an initial step, a step and a transition are connected alternately, and ends with an end step or jump

sequence.

A block has an either state of active or inactive.

 • Active: The block has an active step.

 • Inactive: All steps in the block are inactive.

When the block state changes from inactive to active, the initial step becomes active to start sequential processing. (

Page 129 Block execution sequence)

 • Setting CPU parameters enables only block 0 to be started automatically when the SFC program starts. In

this case, when block 0 is finished after execution of the end step, block 0 is automatically restarted and

step execution is started again from the initial step. (Page 122 Start condition setting)

 • If a start request is issued to a step in an inactive block by using the SET instruction (activating a step), the

block is activated to execute processing from the specified step.

Block0 Block1 Block2
8 SFC PROGRAM
8.2 Structure 85

86
Step
A step is the basic unit for comprising a block.

Steps have the following characteristics.

 • When the step becomes active, the related action is executed.

 • Up to 512 steps can be created in one block.

 • A step No. is assigned to each step. Step Nos. are used to monitor a specific step being executed or forcibly start or stop

the step by using the SFC control instruction. (Page 97 Assigning the step relay (S) areas to steps)

 • Each step name and No. are unique within each block. (Each cannot be a blank.)

The step name, step No., attribute, and attribute target can be changed from the "Step Properties" window.

Select a step and select [Edit][Properties] in the menu. The "Step Properties" window is displayed. GX

Works3 Operating Manual

(1) Step name

(2) Step No.

(3) Attribute

(4) Attribute target

(1)

(3)

(2)

(4)
8 SFC PROGRAM
8.2 Structure

8

Step types
The following table lists steps.

 • The type of a step can be changed by changing the setting of "Type" in the "Step Properties" window.

 • For the reset step [R], block start step (with END check) [BC], or block start step (without END check) [BS],

specify a step name or a block No. in "Step Attribute Target" in the "Properties" window.

For the setting method, refer to the following.

 GX Works3 Operating Manual

Item Description

Normal step A step that has no attribute.

This step can also be used without an action.

Initial step A step that indicates the beginning of a block.

This step can also be used without an action.

Coil HOLD step [SC] A step that transitions while holding the coil output that has been turned on by

using the OUT instruction when the transition becomes TRUE.

Operation HOLD step (without

transition check) [SE]

A step which continues the operation of the action even after step transition.

After the transition becomes TRUE and the next step is activated, the transition is

not checked.

Operation HOLD step (with

transition check) [ST]

A step which continues the operation of the action even after step transition.

Even after the transition becomes TRUE and the next step is activated the

transition is checked repeatedly.

Reset step [R] Deactivates the specified step.

Block start step (with END

check) [BC]

Activates the specified block.

When the specified block becomes inactive and the transition becomes TRUE, a

transition to the next step occurs.

Block start step (without END

check) [BS]

Activates the specified block.

When the transition becomes TRUE, a transition to the next step occurs.

End step Ends a block.
8 SFC PROGRAM
8.2 Structure 87

88
Normal step (without attribute)
While this type of step is active, the transition following the step is always checked and, when the transition becomes TRUE,

the next step becomes active.

The output status of the action of a step, when a transition to the next step occurs, varies depending on the instruction used.

■Step without action
A step without an action can also be used as a waiting step.

 • While a step is active, the transition is always checked and, when the transition becomes TRUE, the next step becomes

active.

 • This type of step works as a normal step if an action is added to it.

Item Description Example

When the OUT

instruction is used

(Other than the

OUT C instruction)

When a transition to the next step occurs and the

relevant step becomes inactive, the output by using the

OUT instruction turns off automatically.

Similarly, the timer also clears the current value and

turns off the contact.

However, the select statement of structured text

language or the output by using the OUT instruction

which is repeatedly using within the statement does not

turn off automatically.

When the transition (2) becomes TRUE while Y0 is turned on by using the

OUT instruction triggered by the action of step (1), Y0 is automatically turned

off.

When the OUT C

instruction is used

If the execution condition of the counter in the action is

already on when the transition becomes TRUE and

activate the step, the counter is incremented by 1.

When a transition to the next step occurs before reset

instructions of the counter is executed, the present

value of the counter and the ON state of the contact is

held even if the step becomes inactive.

To reset the counter, use the RST instruction in another

step.

If X10 is already on while step (1) is active, counter C0 counts once when

execution proceeds to step (3) after the transition (2) becomes TRUE.

When the SET,

basic, or application

instruction is used

If a transition to the next step occurs and the step

becomes inactive, the ON state or the data stored in the

device/label is held.

To turn off the ON device/label or clear the data stored

in the device/label, use the RST instruction in another

step.

When Y0 is turned on by using the SET instruction triggered by the action in

step (1), the ON state will be held even when the transition (3) becomes

TRUE and a transition to step (4) occurs.

When the PLS or

instructions

executed on the

rising edge

Even when the contact of the execution condition is

always on, the instruction is executed every time the

step changes from inactive to active.

Even when the contact of the execution condition is on (1), the PLS instruction

is executed every time the step (2) becomes active.

X1 Y0
(1)

(2)

(1)

(3)

(2)

K10
X10

OUT C0

(1)

(3)
(2)

(4)

X2
SET Y0

(2)

(1)
ON

PLS Y0
8 SFC PROGRAM
8.2 Structure

8

Initial step
Initial step is a step that indicates the beginning of a block. When a block is started, the initial step in the block becomes

active.

 • The execution of action and the check of transition are the same as the normal step.

 • An attribute of coil HOLD [SC], operation HOLD [SE, ST], or reset [R] can be added to the initial step. The initial step can

also be a step without action.

 • Only one initial step can be created in one block.

Coil HOLD step [SC]
Coil HOLD step [SC] is a step which holds the coil output that has been turned on by using the OUT instruction and an active

state transitions to the next step when the transition becomes TRUE,

No operation in the action is performed after a transition becomes TRUE and the next step is activated. Therefore, the coil

output status will remain unchanged even if the input condition in the action is changed.

■Coil off timing
The ON coil is turned off in the coil HOLD step after transition when any of the following occurs:

■Operation when the block is paused or restart
Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,

block stop mode bit setting of the SFC information device, and step hold status. (Page 124 Operation when the block is

paused or restarted)

Y10 (1) that has been turned on by using the OUT instruction remains on (3) even when the transition (2) becomes TRUE.

• When the end step of a block is executed (other than the case where SM327 is on)

• When a block is forcibly terminated by using the RST instruction (Ending a block)

• When a step is reset by using the RST instruction (Deactivating a step)

• When the device specified as the block START/END bit of the SFC information devices is reset

• When a reset step for resetting the coil HOLD step becomes active

• When SM321 (SFC program start/stop) is turned off

• When the coil is reset by the program

• When the stop instruction is executed with the stop-time output mode set off

• When S999 is specified at the reset step within the block

(2) (1)
Y10

Y10

ON

(3)
ON

ON
8 SFC PROGRAM
8.2 Structure 89

90
Operation HOLD step (without transition check) [SE]
The operation HOLD step (without transition check) [SE] is a step which continues the operation of the action even after

transition.

This step continues the operation in the action even after a transition becomes TRUE and the next step is activated.

Therefore, when the input condition changes, the coil status also changes.

After the transition becomes TRUE and the next step is activated, the transition is not checked and the transition to the next

step does not occur.

■Deactivation timing
An operation HOLD step (without transition check) becomes inactive when any of the following occurs:

■Operation when the block is paused or restart
Operation when the block is paused or restart depends on the combination of SM325 (Output mode at block stop), block stop

mode bit setting of SFC information device, and step hold status. (Page 124 Operation when the block is paused or

restarted)

When step (2) is activated, step (1) holds the operation.

While holding the operation, the transition is not checked but the action (3)

is kept executed.

In this case, Y10 turns on or off accordingly as X0 turns on or off.

• When the end step of a block is executed

• When a block is forcibly terminated by using the RST instruction (Ending a block)

• When a step is reset by using the RST instruction (Deactivating a step)

• When the device specified as the block START/END bit of the SFC information devices is reset

• When a reset step for resetting the operation HOLD step (without transition check) becomes active

• When SM321 (SFC program start/stop) is turned off

• When S999 is specified at the reset step within the block

(3)(1)

(2)

X0 Y10
8 SFC PROGRAM
8.2 Structure

8

Operation HOLD step (with transition check) [ST]
The operation HOLD step (with transition check) [ST] is a step which continues the operation of the action even after step

transition.

This step continues the operation in the action even after a transition becomes TRUE and the next step is activated.

Therefore, when the input condition changes, the coil status also changes.

Even after the transition becomes TRUE and the next step is activated the transition is checked repeatedly. When the

transition becomes TRUE again, the operation in the action is continued while activating the next step again.

■Deactivation timing
An operation HOLD step (with transition check) becomes inactive when any of the following occurs:

■Operation when the block is paused or restart
Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,

block stop mode bit setting of the SFC information device, and step hold status. (Page 124 Operation when the block is

paused or restarted)

■Precautions
 • In the operation HOLD step (with transition check), the next step is activated every scan while the immediate transition

becomes TRUE. To prevent transition every scan, use instructions executed on the rising edge such as the PLS instruction

for the transition.

 • When SM328 (Clear processing mode when the sequence reaches the end step) is on, prevent the transition immediately

after the operation HOLD step (with transition check) from becoming always TRUE. Otherwise, the next step is kept

activating and holding no operation, therefore the block cannot be ended.

When step (2) is activated, step (1) holds the operation.

The action (3) is kept executed the same as a normal active step while

the step holds the operation.

In this case, Y10 turns on or off accordingly as X0 turns on or off.

The transition is also checked and, when the becomes TRUE, the next

step becomes active.

• When the end step of a block is executed

• When a block is forcibly terminated by using the RST instruction (Ending a block)

• When a step is reset by using the RST instruction (Deactivating a step)

• When the device specified as the block START/END bit of the SFC information devices is reset

• When a reset step for resetting the operation HOLD step (without transition check) becomes active

• When SM321 (SFC program start/stop) is turned off

• When S999 is specified at the reset step within the block

By setting the start of rising edge pulse operation as the transition, step (1) is

activated during only one scan caused when X0 is turned on.

Even when step (2) is activated and becomes inactive, step (1) is not activated

unless X0 is turned off and on again.

(3)(1)

(2)

X0 Y10

(1)

(2)

X0
TRAN
8 SFC PROGRAM
8.2 Structure 91

92
Reset step [R]
Reset step is a step deactivates the specified step.

 • This step deactivates the specified step in the current block before execution of the action every scan. Except for resetting

the specified step, the reset step is the same as a normal step (without step attributes).

 • When the specified step No. is S999, the steps (coil HOLD step, operation HOLD step (without transition check), and

operation HOLD step (with transition check)) that holds each operations in the current block are all deactivated. In this

case, only the steps that hold operations can be deactivated. However, any HOLD step is not deactivated when operating

with the state that does not hold an operation.

 • The current step No. cannot be specified as specified step No.

Block start step (with END check) [BC]
Block start step (with END check) is a step which starts the specified block. Then starts the check of the transition to the next

step when the destination block is deactivated.

The operation to be performed if multiple attempts to start one block are performed simultaneously or if an attempt to start an

already started block is performed follows the operation setting applicable to the block double start. (Page 126 Operation

mode when an active block is activated ("Act at Block Multi-Activated"))

Only one block can be specified. To start multiple blocks simultaneously, use parallel branches and multiple block start steps.

■Precautions
 • An action cannot be created to the block start step (with end check).

 • The block start step (with END check) cannot be created immediately before convergence of a parallel convergence. To

create the step immediately before the convergence of a parallel convergence, use a block start step (without END check).

When this step is activated, the block start step (with END check) [BC] starts block (BL1).

No processing is performed until the execution of the start destination block (BL1) ends and

becomes inactive and the transition (2) is not checked.

When the execution of block (BL1) ends and becomes inactive, only the transition (2) check

is performed and, when the condition becomes TRUE, the transition to the next step occurs.(1)

BL1

(2)
8 SFC PROGRAM
8.2 Structure

8

Block start step (without END check) [BS]
Block start step (without END check) is a step where the specified block is started and, regardless of the active status of the

start destination block, the transition to the next step is checked.

The operation to be performed if multiple attempts to start one block are performed simultaneously or if an attempt to start an

already started block is performed follows the operation setting applicable to the block double start. (Page 126 Operation

mode when an active block is activated ("Act at Block Multi-Activated"))

Only one block can be specified. To start multiple blocks simultaneously, use parallel branches and multiple block start steps.

■Precautions
 • An action cannot be created to the block start step (without END check).

After this step starts block (BL1), only the transition (2) is

checked and, when the transition becomes TRUE, execution

proceeds to the next step without waiting for the start destination

block to end.
(1)

(2)
X0

TRAN

BL1
8 SFC PROGRAM
8.2 Structure 93

94
End step
End step is a step that totally ends a series of processing in a block.

 • When an active state is reached to the end step and no active step exists other than steps that hold operations in a block,

all the steps in hold state are deactivated and the block is ended.

 • When a block contains any active steps other than steps that hold operations in a block, the following processing is

performed depending on the status of SM328 (Clear processing mode when the sequence reaches the end step).

 • When clear processing is performed, the coil outputs turned on by using the OUT instruction are all turned off. However, for

the coil output of the step in hold state, the following processing is performed depending on the status of SM327 (Output

mode at execution of the end step).

 • The following shows how to restart the block once ended.

Status of SM328 Description

Off Clear processing is performed.

The active steps remaining in the block are all terminated forcibly to end the block.

On Clear processing is not performed.

The execution of the block is continued as is and the block is not ended.

Status of SM327 Description

Off All the outputs are turned off.

On All the outputs are held.

The setting of SM327 is valid for only the HOLD steps that holds operation. All the outputs of the HOLD steps that does

not hold operations and the transition does not become TRUE are turned off. Also, when SM327 is on, the steps

become inactive.

However, when a forced end is performed such as by the block end instruction, the coil outputs of all steps are turned

off.

Item Description

Block 0 The start condition of block 0 is set to

"Auto-start block 0" in the SFC setting

of parameters.

The initial step is automatically activated again and processing is executed repeatedly.

The start condition of block 0 is set to

"Do not auto-start block 0" in the SFC

setting of parameters.

The block is restarted when a start request is issued for the specified block in the following methods.

• The block start step is activated by another block.

• The SET (Starting a block) instruction is executed.

• The block START/END bit of the SFC information device is turned on.All blocks other than block 0
8 SFC PROGRAM
8.2 Structure

8

■Precautions
 • An action cannot be created to the end step.

 • The setting of SM327 (Output mode at execution of the end step) is valid only when the end step becomes active. When a

forced termination is performed such as by using the RST instruction (Ending a block), the coil outputs of all steps are

turned off.

 • If only the steps [SC, SE, ST] that hold operations remain at arrival at the end step, those steps are deactivated if SM328

(Clear processing mode when the sequence reaches the end step) is on. If turning off the coil output of the step in hold

state is not required, turn on SM327. The following figure shows the operational relationships between SM328 and the

HOLD step.

When a normal active step remains When a HOLD step that the transition has
not become TRUE remains (the step does
not hold an operation)

When an active step that holds an
operation remains

• When SM328 is off, the block is ended by clearing the step.

• When SM328 is on, processing is continued without clearing the step.

• The block is ended by clearing the step

regardless of the setting of SM328.
8 SFC PROGRAM
8.2 Structure 95

96
 • If a block is started at the block start step when SM328 is on, execution returns to the source as soon as there are no active

step that does not hold the operation in the block.

 • Prevent the transition after the operation HOLD step (with transition check) from becoming always TRUE. When the

transition immediately after the operation HOLD step (with transition check) always becomes TRUE, the next step is kept

active and, therefore, the block can no longer be ended when SM328 is on.

Multiple end steps can be created in the SFC diagram.

To do so, select a step in the selection branch and select [Edit] [Modify] [End step] from the menu.
8 SFC PROGRAM
8.2 Structure

8

Assigning the step relay (S) areas to steps
The step relay is a device corresponding to each step in the SFC program. It is on when the relevant step is active (including

stop and hold state), and is off when the relevant step is inactive.

Step relays are assigned as follows.

 • Step relays are assigned sequentially in order of block No. starting from block 0 in an SFC program and in order of step No.

within a block.

 • No step relay is assigned to any non-existing block No.

 • Similarly, no step relay is assigned to any missing step No. within a block. The relevant bit is always off.

 • All bits after the step relays assigned in the last block are off.

Ex.

The following example shows the step relay assignments of the following block configuration.

Any step No. can be assigned to each step. However, assign step numbers in ascending order wherever

possible because any missing step No. will decrease the maximum number of steps that can be created.

Step No. 0 is assigned to the first initial step in a block.

Step numbers that can be assigned in a block range from 0 to 511. Any step No. exceeding the upper limit cannot be

assigned. Any step No. must be unique within a block. Same step numbers can be used between different blocks.

To specify a step relay in another block, use the following format.

Ex.

Specifying step No. 23 in block No. 12

■Precautions
 • Even if "Output Mode at Block Stop" of the SFC setting is off, the step relay is on when the step is stopped the operation.

Block0: The largest step No. is 8, and step Nos. 3 and 6 are missing.

Block1: Missing

Block2: The largest step No. is 12, and step No. 3 is missing.

Block3 and after: Missing

(1) Stored data

(2) Step numbers in a block

(3) All 0s for missing blocks

Program type Device
notation

Description

SFC program In the same block S23 The block name can be omitted when specifying a step in the same block

Other than block 12 BL12\S23 Specify the target block No. and step No.

Sequence program

other than SFC

program

Specifying the current target

block

S23 The block name can be omitted when specifying a step in the target block

Specifying a block different

from the current target block

BL12\S23 Specify the target block No. and step No.

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

S6 S5 S4 S2 S1 S0 S8 S7 S5 S4 S2 S1 S0

0 0 0 0 0 0 0 0 0 0

0 0 0

Block0Block2

(1)

(2)

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

S12 S11 S9S10 S8 S7

Block2(3)

(1)

(2)

S15 to S0

S31 to S16
8 SFC PROGRAM
8.2 Structure 97

98
Action
The action is a program which is executed while a step is active.

*1 N indicates that the action is executed while a step is active. Nothing but N can be set.

When the step becomes active, the action is executed every scan. When the step becomes inactive, the action is ended and

not executed until the step becomes active next.

Up to 4 actions can be created in one step. When multiple actions are created, they are executed in order from the top.

For details on detailed expression or label/devices, refer to the following.

 GX Works3 Operating Manual

(1) Action name

(2) Qualifier*1

(3) Detailed expression of action

(4) Action label/device

(3)

(4)

(1)

(2)
8 SFC PROGRAM
8.2 Structure

8

Instructions that cannot be used
Some instructions cannot be used in actions. The following table lists the instructions that cannot be used.

*1 This instruction can be used in a function or a function block in the action.

Create a contact to be input condition of each instruction in the ladder of detailed expression.

■Restrictions
The following table lists the restrictions on individual programming languages used to create an action.

Classification Instruction symbol

Master control instruction MC*1

MCR*1

Termination instruction FEND

END

Program branch instruction CJ*1

SCJ*1

JMP*1

Program execution control instruction IRET

Structure creation instruction BREAK*1

RET

Language Description

Ladder diagram A pointer and an interrupt pointer cannot be input in the pointer input area.

■Functions/function blocks that cannot be used

• Function/function block that includes an instruction that cannot be used in an action

• Function/function block that includes a pointer

• Function block for which, "Use MC/MCR for EN control" is "Yes", "Use EN/ENO" is "No", and "FB type" is "Macro type"

Structured text language Page 54 STRUCTURED TEXT LANGUAGE

FBD/LD Page 71 FBD/LD
8 SFC PROGRAM
8.2 Structure 99

10
Precautions
 • The step operation is almost the same as the following circuit.

 • If the CALL instruction is used to issue a subroutine call in an action of the step, the output of the call destination is not

turned off even when the step becomes inactive after the transition becomes TRUE. To turn off the output of the call

destination when the step becomes inactive after the transition becomes TRUE, write the FCALL instruction after the CALL

instruction or use the XCALL instruction. When using a subroutine call in an action of the step, using the XCALL instruction

can reduce the number of steps.

 • Even when the input condition in the action is Always On, it is assumed off after the step is inactive or the action is OFF-

executed. Therefore, immediately after the step becomes active, the instruction is executed when the output is turned on.

For example, when the input condition is set to Always On by using instructions executed on the rising edge such as the

PLS or INCP instruction, the instruction is executed every time the step becomes active.

 • With the OUT C instruction, SET instruction, basic instruction, or application instruction, the device is not turned off when

the action is turned off. To turn off the device, execute the RST instruction separately.

 • With the PLS or PLF instruction, the specified device is normally turned on in only one scan and thereafter becomes off.

However, it is kept on if the specified device is turned on simultaneously when the transition of the coil HOLD step becomes

TRUE. In this case, it is turned off when OFF execution is performed in the coil HOLD step, the RST instruction is executed

from another step, or the step is activated again.

 • If OFF execution is performed while the input condition of the PLF instruction is ON, the specified device remains ON.

 • When the transition becomes TRUE in the coil HOLD step or the step is stopped by SM325 (Output mode at block stop)

which is set to hold, operation may not be performed just holding the coil output. This case means the non-execution status,

and therefore the operation of each instruction at the time of operation resumption depends on the execution condition

before the no-execution status is entered.

(1)Input condition of each instruction

(2)Contact (on when active, off when inactive) indicating the step status

(1)

(2)

(1)

Action
0
8 SFC PROGRAM
8.2 Structure

8

Transition
A condition for transition to the next step, and a transition to the next step occurs when the condition becomes TRUE.

(1) Transition name

(2) Transition No.

(3) Detailed expression of transition (Page 107 Precautions)

(4) Direct expression of transition (Page 108 Usable instructions)

(5) Transition label/device (Page 108 Usable instructions)

(3)
(1)

(2)

(5)

(4)
8 SFC PROGRAM
8.2 Structure 101

10
Transition types
The following table lists the types of transition.

For the operation of transition to the step which is already activated, refer to the following.

Page 137 Behavior when an active step is activated

Item Description

Series sequence When the transition becomes TRUE, the active state transitions from the

preceding step to the subsequent step.

Selective sequence

(divergence/convergence)

Divergence: A step branches to multiple transitions, and only the step in the line

where the transition becomes TRUE first is activated.

Convergence: The next step is activated when the transition immediately before

convergence, which is in the line where the transition becomes TRUE first,

becomes TRUE.

Simultaneous sequence

(divergence/convergence)

Divergence: All the steps branched from one step are activated simultaneously.

Convergence: When all the steps immediately before convergence are

activated, a transition to the next step occurs when the common transition

becomes TRUE.

Jump sequence When the transition becomes TRUE, execution proceeds to the specified step in

the same block.
2
8 SFC PROGRAM
8.2 Structure

8

Series sequence
One step is connected serially to the next step through a transition. When the transition becomes TRUE, the next step is

activated.

Selective sequence (divergence/convergence)
One step branches to multiple transitions and the steps connected to them. Only the step that the transition becomes TRUE

first among multiple transitions is activated.

When transition (2) becomes TRUE during execution of the action of step (1), the action of step (1) is deactivated and the

action of step (3) is executed.

Item Description

Divergence When the action of step (1) is executed, the step (4) or (5) is selected depending on

which transition (2) or (3) becomes TRUE first, and the action (6) or (7) of the

selected step is executed.

• If multiple transitions become TRUE simultaneously, the condition to the left will

take precedence.

• The action of step (1) will then be deactivated. However, the action of a HOLD step

continues operation according to the attribute.

• Subsequent processing will proceed from step to step in the selected column until

another convergence occurs.

Convergence When the transition (1) or (2) on the executed branch becomes TRUE, the action (3)

or (4) of the executed step will be deactivated (however, a HOLD step follows its

attribute), and the action of step (5) is executed.

(2)

(1)

(3)

(2) (3)

(1)

(4) (5)
(6) (7)

(1) (2)

(3) (4)

(5)
8 SFC PROGRAM
8.2 Structure 103

10
 • The selective sequence allows branching to up to 32 transition.

 • If multiple transitions become TRUE simultaneously, the condition to the left will take precedence.

 • An SFC diagram in which the numbers of divergences and convergences of a selective sequence do not match can also be

created. However, in an SFC diagram, a selection branch and parallel convergence or a parallel branch and selective

convergence cannot be combined.

 • In a selective transition, a convergence can be omitted by a jump transition or end transition.

The above program can be created by changing the step other than those at the left end of selective branches

to the end step and changing the end step at the left end of the selective branch to a jump sequence.

For the operation method for changing steps, refer to the following.

 GX Works3 Operating Manual

If transition (1) and (2) become TRUE simultaneously, the action of step

(3) will be executed.

When transition (2) becomes TRUE during action of step (1), step (3) and step (4) are sequentially executed. When the transition

(5) becomes TRUE, a jump sequence to step (1) occurs.

(1) (2)

(3)

(1)

(2)

(3)

(4)

(5)
4
8 SFC PROGRAM
8.2 Structure

8

Simultaneous sequence (divergence/convergence)
One transition branches to multiple steps. When the transition becomes TRUE, all the steps that connected are activated

simultaneously.

 • The simultaneous sequence allows transitions to up to 32 steps.

 • If another block is started by the simultaneous sequence, the START source block and START destination block will be

executed simultaneously.

 • A simultaneous convergence is always performed after a simultaneous branch.

■Precautions
 • When the steps connected by a simultaneous convergence include a step in hold state, the operation is performed as

shown below.

 • In the simultaneous convergence, a block start step (with END check) cannot be created immediately before the

convergence. Use a block start step (without END check) [BS].

Item Description

Divergence • When transition (2) becomes TRUE during execution of the action of step

(1), the actions of steps (3) and (4) are executed simultaneously.

• The action of step (1) will then be deactivated. However, the action of a

HOLD step continues operation according to the attribute.

• Processing will proceed to step (7) when transition (5) becomes TRUE, and

to step (8) when transition (6) becomes TRUE.

Convergence • When transition (3) and (4) becomes TRUE during execution of the actions

of steps (1) and (2), the actions of steps (1) and (2) are deactivated

(however, a HOLD step follows its attribute) and transitions to steps (5) and

(6) occur.

• When the steps (5) and (6) immediately before the convergence become

inactive, the transition (7) is checked and, if it becomes TRUE, the action of

step (8) is executed.

Item Description

Coil HOLD step [SC] A transition to the next step does not occur the same as an inactive step.

Operation HOLD step (without transition

check) [SE]

Operation HOLD step (with transition

check) [ST]

A transitions to the next step occurs if another connected step is active.

(1)

(2)

(3)

(7)

(5)

(4)

(8)

(6)

(1)

(3)

(5)

(8)

(7)

(6)

(2)

(4)
8 SFC PROGRAM
8.2 Structure 105

10
Jump sequence
A connection which execution proceeds to the specified step in the same block when the transition becomes TRUE.

 • There are no restrictions regarding the number of jump sequences.

 • A jump sequence in the simultaneous sequence is possible only in the same branch. A jump sequence to another branch

within a simultaneous branch, a jump sequence for exiting from a simultaneous branch, or a jump sequence to a

simultaneous branch from outside a simultaneous branch cannot be created.

Ex.

Example of jump sequence that can be specified in the simultaneous branch

■Precautions
Under the following conditions, a step cannot be specified as the destination of jump sequence.

 • When a step at the position escaping from a simultaneous sequence is specified

 • When a step at the position entering a simultaneous sequence is specified

 • When a step immediately before the preceding transition is specified

 • When current step is specified

When transition (2) becomes TRUE during execution of the action of step (1), the action of step (1) is

deactivated (however, a HOLD step follows its attribute) and the action of step (3) is executed.

(1)

(2)

(3)
6
8 SFC PROGRAM
8.2 Structure

8

Detailed expression of transition
Create a condition which transfers an active state to the next step in the Zoom editor. The condition can be created with

following programming languages.

 • The detailed expression of the same transition can be used for multiple transitions.

 • The created detailed expression of transition can be checked from the Zoom list. GX Works3 Operating

Manual

■Usable instructions
The following table lists the instructions that can be used in transition programs.

*1 The EGP and EGF instructions cannot be used in a transition program created in ST or FBD/LD.

Type Description

Ladder diagram Used to create a transition program consisting of a contact circuit and the TRAN instruction (Creating a dummy transition condition)

in a single circuit block. The transition becomes TRUE when the TRAN instruction is executed.

■Restrictions

• Inline ST cannot be used.

• Only a TRAN instruction can be input to the coil.

Structured text language Used to create the following transition program.

■Method of writing a TRAN function (Creating a dummy transition condition) call statement

TRAN(bLabel1 & bLabel2);

//The transition becomes TRUE when the Boolean expression of the input argument is true.

■Method of writing an assignment statement of Boolean expression for reserved word "TRAN"

TRAN := bLabel1 & bLabel2;

//The transition becomes TRUE when the Boolean expression of the right-hand side is true.

■Method of writing an assignment statement of Boolean expression for the transition name

Transition1 := bLabel1 & bLabel2;

//Transition1 indicates the transition name input on the SFC editor. The transition becomes TRUE. when the Boolean

expression of the right-hand side is true.

FBD/LD Used to create a transition program ending with the TRAN instruction (Creating a dummy transition condition) in a single network.

■Restrictions

• Only one TRAN instruction can be used.

• A program to be assigned to the device/label cannot be created.

• Coil, function block, function (except some), jump, jump label, and return program elements cannot be used.

For the available instructions other than TRAN, refer to the following.

Page 107 Detailed expression of transition

Classification Instruction symbol

Contact instruction LD, LDI, AND, ANI, OR, ORI

LDP, LDF, ANDP, ANDF, ORP, ORF

LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI

Association instruction ANB, ORB

INV

MEP, MEF

EGP, EGF*1

Comparison operation instruction LD, LD_U, AND, AND_U, OR, OR_U

LDD, LDD_U, ANDD, ANDD_U, ORD, ORD_U

Real number instruction LDE, ANDE, ORE

LDED, ANDED, ORED

Character string processing

instruction

LD$, AND$, OR$
8 SFC PROGRAM
8.2 Structure 107

10
Direct expression of transition
The transition which transfers an active state to the next step can be created directly on the SFC diagram. A contact of FBD/

LD element is connected to it.

Coil, function block, function, jump, jump label, and return elements cannot be used.

Select a transition and select [Edit] [Modify] [Direct Expression for Transition] from the menu. This can

connect the FBD/LD element to the left side of the transition. GX Works3 Operating Manual

Transition label/device
Bit type label, bit device or Boolean value can be specified as a condition which transfer an active state to the next step.

Select a transition name, select [Edit] [Modify] [Name] from the menu, and input the bit type label, bit

device, or Boolean value to be specified. GX Works3 Operating Manual

■Precautions
 • When a device (T, ST, LT, LST, C, LC) of timer or counter is used as a transition, the device operates as a contact (TS, STS,

LTS, LSTS, CS, LCS). Also, when a coil (TC, STC, LTC, LSTC, CC, LCC) of timer or counter is used, the coil operates as a

contact.

 • To use a coil of timer or counter for transition, use a timer type or counter type label.

Ex.

Timer device and timer type label

Bit type label Bit device Boolean value

When the contact (TS0) is on, the active state transitions to the next step.

When the contact (TS1) is off, the active state transitions to the next step.

When the coil of timer type label (tLabel0) is on, the active state transitions to the next step.

When the coil of timer type label (tLabel1) is off, the active state transitions to the next step.
8
8 SFC PROGRAM
8.2 Structure

8

8.3 SFC Control Instructions
SFC control instructions can be used to check a block or step operation status (active/inactive), or to execute a forced start,

end or other. If SFC control instructions are used, SFC programs can be controlled from the actions of sequence programs

and SFC programs.

Instruction List
The following table lists the SFC control instructions.

*1 When using in a sequence program, block 0 is the target block. When using in a SFC program, current block is the target block.

For details on the SFC control instructions, refer to the following.

 MELSEC iQ-R Programming Manual (Instructions, Standard Functions/Function Blocks)

Instruction name Instruction symbol Processing

Checking the status of a step LD, LDI, AND, ANI, OR, ORI [S]*1 Checks a specified step in a specified block to determine if the step is

active or inactive.LD, LDI, AND, ANI, OR, ORI [BL\S]

Checking the status of a block LD, LDI, AND, ANI, OR, ORI [BL] Checks whether the specified block is active or inactive.

Batch-reading the status of

steps

MOV(P) [K4S]*1 Step status in a specified block are read to a specified device as bit

information.MOV(P) [BL\K4S]

DMOV(P) [K8S]*1

DMOV(P) [BL\K8S]

BMOV(P) [K4S]*1

BMOV(P) [BL\K4S]

Starting a block SET [BL] A specified block is started independently and is executed from its initial

step.

Ending a block RST [BL] Deactivates the specified block.

Pausing a block PAUSE [BL] A specified block is temporarily stopped.

Restarting a block RSTART [BL] This instruction releases the temporary stop and restarts the sequence

from the step where the sequence was stopped in the specified block.

Activating a step SET [S]*1 Activates the specified step.

SET [BL\S]

Deactivating a step RST [S]*1 Deactivates the specified step.

RST [BL\S]

Switching a block BRSET Specifies a target block No. of SFC control instruction.
8 SFC PROGRAM
8.3 SFC Control Instructions 109

11
■Precautions
 • Do not use the SFC control instructions in interrupt programs.

 • Execute the SFC control instruction only when SM321 (SFC program start/stop) is on.

Index modification
The step relays and SFC block devices specified by SFC control instructions can be index-modified.

The step relays and SFC block devices can be specified within the following range, including the case of index modification.

For details on index modification, refer to the following.

 MELSEC iQ-R CPU Module User's Manual (Application)

Device Index modification target part

SZ Step relay

BL\SZ Step of step relay with block specification

BLZ\S Block of step relay with block specification

BLZ\SZ Block and step of step relay with block specification

BLZ SFC block device

Device Range

S 0 to 16383 (the maximum value is set by a CPU parameter)

BL\S BL 0 to 319

S 0 to 511

BL 0 to 319
0
8 SFC PROGRAM
8.3 SFC Control Instructions

8

8.4 SFC Information Devices
SFC information device is the device or label which operates the forced start/termination and pause/restart direction to a

block, check of the status of transition and the number of active steps, or direction of continuous transition operation of a

transition.

SFC information device is set every blocks.

[Navigation window] [Program] SFC program fileproperties of block to be set

Window

Displayed items

Not only global devices and local devices but also global labels or local labels can be specified for SFC information devices.

Indirect specification, digit specification, and index modification (Z, LZ) cannot be performed.

The settings of SFC information device are required only when an SFC information device is used. If such

device is not used, the settings of SFC information device are not required.

Item Description Available data

Device Data type (label)

Block START/END Bit Sets the device or label to check whether the block is active.

Setting the bit to on can start the block and setting it to off can end the block.

Bit: Y, M, L, F, V, B

Word: Bit

specification of D, W,

RD

Bool, Boolean array,

INT bit specification,

Word bit

specification
Step Transition Bit Sets the device or label to check whether the transition of the step being executed

becomes TRUE.

This bit turns on when the transition to the next step becomes TRUE after

execution of the action of each step.

Block PAUSE/RESTART

Bit

Sets the device or label to pause or restart an active block.

Setting the bit to ON stops the block at the step in execution and setting it to OFF

restarts executing the block from the step where the block was stopped previously.

Block Stop Mode Bit Sets the device or label that decides the timing for stopping a block.

Setting the bit to ON stops the block after transition of each step and setting it to

OFF stops all steps immediately.

Continuous Transition Bit Sets the device or label that decides the continuous transition action when the

transition becomes TRUE.

Setting the bit to ON enables continuous transition and accordingly the action of

the next step is executed in the same scan. Setting the bit to OFF disables

continuous transition and accordingly one step is executed every scan.

Number of Active Steps

Register

Sets the device or label in which the number of currently active steps of a block is

to be stored.

D, W, R, ZR, RD INT, WORD
8 SFC PROGRAM
8.4 SFC Information Devices 111

11
Block START/END bit
This bit is a device or label to check whether the block is active.

Setting the device or label to on can start the block and setting it to off can end the block.

If a program to start a block is not available or because the START/END of a block can also be controlled from the engineering

tool, this device or label can be used for debugging or test operation in units of block.

 • When the set block starts, the block START/END bit is automatically turned on. While the set block is active, the block

START/END bit stays on.

 • When the set block becomes inactive, the block START/END bit is automatically turned off. While the set block is inactive,

the block START/END bit stays off.

Ex.

M0 is specified in the block START/END bit of Block 1 (BL1).

 • When the block START/END bit is turned on while the set block is inactive, the block is started independently.

 • When the block START/END bit is turned off while the set block is active, the block is ended.

The block START/END bit can also be turned on or off by the test operation of the engineering tool. GX Works3 Operating

Manual

When the block START/END bit is turned off to make the set block inactive, processing will occur as follows:

By changing the current value of BL or BL\S from watch window of the engineering tool, the status of a

block (START/END) or a step (active/inactive) can be changed.

Also, the status of the specified step (active/inactive) is changed from the menu [Debug] [Control SFC

Steps]. GX Works3 Operating Manual

(1) Block 1 (BL1) starts and M0 turns on.

(2) Block 1 becomes inactive and M1 turns off.

• Execution of the set block is stopped and the outputs of the step being executed are all turned off. However, the devices turned on by using the SET

instruction will not be turned off.

• If another block has been started by a block start step in the set block, the set block ends but the start destination block will remain active and continue

processing.

BL1

(1)

(1)

M0

(2)

(2)
2
8 SFC PROGRAM
8.4 SFC Information Devices

8

■Precautions
 • The following table shows the restart operation after the set block is deactivated.

 • When the SFC program ends, all block START/END bits that have been set in the SFC information devices are turned off.

However, only when a resume start is enabled with the resume start setting, all block START/END bits are restored when

the SFC program starts.

Set block Description

Block 0 When the start conditions setting of is

"Auto-start block 0" in the SFC setting of

the CPU parameter.

Operation is restarted from the initial step following end step processing.

When the start conditions setting of is "Do

not auto-start block 0" in the SFC setting of

the CPU parameter.

The block is deactivated after end step processing, and processing is restarted from the initial step

when another start request occurs for that block.

Other than block 0
8 SFC PROGRAM
8.4 SFC Information Devices 113

11
Step transition bit
The step transition bit is used to check whether the transition of an active step becomes TRUE.

If a transition to the next step becomes TRUE, step transition bit turns on automatically after an action of each steps executed,

 A transition bit which is on will automatically switch off when processing of the specified block occurs again.

Ex.

M1 is specified in the step transition bit of Block0

If the continuous transition bit is turned on and set to "Continuous transition", the step transition bit will remain on during the

action of the next step after the transition becomes TRUE. It will also remain on following the execution of multiple steps, even

if the transition becomes FALSE. In these cases, the step transition bit will be turned off when the specified block is executed

in the next scan.

When multiple active steps exist in the block, the step transition bit turns on when one of the transition becomes TRUE.

■Precautions
 • When the end step is executed, the step transition bit of the block is turned on. The step transition bit remains on until the

block is reactivated next.

 • The step transition bit is not turned off when the SFC program starts or ends.

If transition (2) becomes TRUE after execution of step

(1), M1 is on during execution of another block.

M1 is turned off at the time of Block0 processing in the

next scan.

If transition (4) does not become TRUE after execution

of step (3), M1 stays off.

If transition (4) becomes TRUE, M1 is on during

execution of another block.

If transition (6) does not become TRUE after execution

of step (5), M1 stays off.

If transition (2) becomes TRUE after execution of step (1), M1 is turned on.

Even if transition (4) does not become TRUE, M1 stays on.

M1 is turned off at the time of Block0 processing in the next scan.

(1)

(2)=ON

(3)

(4)=OFF (4)=ON

(5)

(6)=OFF

(1)

(2)

(3)

(4)

(5)

(6)

Block0

M1

1 scan 1 scan 1 scan

(1)

(2)=ON

(4)=OFF

M1

1 scan
4
8 SFC PROGRAM
8.4 SFC Information Devices

8

Block PAUSE/RESTART bit
This bit is used to temporarily stop processing while the specified block is active.

 • If another block has been started by a block start step, turning on the block PAUSE/RESTART bit stops the specified block,

but the start destination block will remain active and continue processing. To stop the start destination block at the same

time, the start destination's block PAUSE/RESTART bit must also be turned off.

 • When the block PAUSE/RESTART bit specified in an inactive block is turned on, the block does not operate in inactive state

and is put in the stopped state immediately when it becomes active.

 • Even after the specified block is forcibly terminated, the state of the block PAUSE/RESTART bit remains held. If the block is

forcibly terminated while it is stopped and the status of the block PAUSE/RESTART bit is not changed, the block is put in

stopped state immediately after the restart.

Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,

block stop mode bit setting of the SFC information device, and step hold status. (Page 124 Operation when the block is

paused or restarted)

■Precautions
 • The block PAUSE/RESTART bit is not turned off when the SFC program starts or ends.

Block stop mode bit
This bit is used to determine the stop timing of the specified block when the block PAUSE/RESTART bit is turned on or a stop

request is issued by using the PAUSE instruction (Pausing a block).

Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,

block stop mode bit setting of the SFC information device, and step hold status. (Page 124 Operation when the block is

paused or restarted)

■Precautions
 • The block stop mode bit is not turned off when the SFC program starts or ends.

Setting of block PAUSE/
RESTART bit

Description

OFFON When this bit is turned on, the specified block stops at the step being executed.

ONOFF When this bit is turned off, the specified block restarts execution from the action of the step that has been stopped

previously.

• An operation HOLD step (with or without transition check) which has been stopped in operation hold state is

restarted with the state in effect.

• The coil HOLD step cannot be restarted in hold state since the step is deactivated when it stops with the coil output

OFF setting (SM325 is off). If the step stops with the coil output hold setting (SM325 is on), it keeps the hold state

even after it restarts.

Setting of block stop mode bit Description

Off (immediate stop) The block is put in stopped state immediately when a stop request is issued.

On (stop after transition) When a stop request is issued, the block is stopped after the transition for the step being executed becomes TRUE

and a transition occurs.

The action of the step is not executed after the transition.

When the block has multiple active steps, the steps are stopped in order from the one for which the transition

becomes TRUE.

A step that holds an operation stops immediately after a stop request is issued regardless of the setting of the block

stop mode bit.
8 SFC PROGRAM
8.4 SFC Information Devices 115

11
Continuous transition bit
Continuous transition bit is used to specify whether the action of the next step will be executed within the same scan or not

when the transition becomes TRUE.

Ex.

The continuous transition bit of an SFC information device is specified.

 • When the continuous transition bit is set, a continuous transition is disabled while the set bit device is off and is enabled

when the bit device is on, regardless of the on/off state of SM323 (Setting continuous transition to all blocks). When the

continuous transition bit is not set, a continuous transition is disabled while SM323 is off and is enabled when it is on. (

Page 132 Continuous transition ON/OFF operation)

 • SM324 (Continuous transition disable flag) is turned on automatically by the system at SFC program execution, but is off

during continuous transition. Use of SM324 under the AND condition in a transition disables a continuous transition.

Setting of continuous
transition bit

Description

Off (no continuous transition) When the transition becomes TRUE, the action of the transition destination step is executed in the next scan.

On (continuous transition) When the transition becomes TRUE, the action of the transition destination step is executed within the same scan.

When the transition of the steps become TRUE continuously, the actions are executed within the same scan until the

transition becomes FALSE or reaches the end step.

Scan Description

Scan 1 After execution of the sequence program (1), steps (2) to (5) of the SFC program are executed continuously.

Scan 2 and after After execution of the sequence program (1), the action of step (2) is executed until the transition (6) becomes TRUE.

When M0 is on, one scan causes continuous transitions from steps (1) to (3).

Since SM324 is added as the AND condition to the transition (4), the transition (4) after execution of step (3)

does not become TRUE.

In the next scan, SM324 is turned on after step (3) and therefore a transition to step (5) occurs within the scan.

(2)

(3)

(4)

(5)

(6)

(1) (2) (3) (4) (5) (1) (5)END
processing

1 scan

(1)

M0

M0

SM324M0

M0

(2)

(3)

(5)

(4)
6
8 SFC PROGRAM
8.4 SFC Information Devices

8

■Precautions
 • If the continuous transition bit is turned on, execution of actions (from a transition becoming TRUE to destination step)

takes priority over the other processing. allows to shorten a takt time. In this case, however, the operations of the other

blocks and sequence program may become slower.

 • The continuous transition bit is not turned off when the SFC program starts or ends.

 • When a jump transition or selective convergence causes a transition from multiple steps to one step, the action of one step

may be executed twice in a single scan.

 • If the transition after the step becomes TRUE with the setting of "Continuous transition", a step is started or ended within

one scan. In this case, since the END processing has not been executed, the input/output refresh of coil output by using the

OUT instruction in the action is not reflected and therefore other programs cannot detect ON of the coil. In the case of

output (Y), for example, output (Y) is not output while END processing is unexecuted and other programs cannot detect

output (Y) ON. Accordingly, ON of the step relay cannot be detected, either. To reflect the I/O refresh of the OUT instruction,

create a program so that one step is executed in multiple scans.

 • When creating a program that uses a jump sequence for looping, eliminate continuous transitions or prevent all transitions

in the loop from becoming TRUE during execution. If all transitions in the loop become TRUE during execution with

continuous transitions enabled, an infinite loop occurs in a single scan.

When the setting is "Continuous transition", step (1) is executed twice in a single scan.

When the transition (1) and (2) become TRUE, the following is executed in one scan.

• The action of step (3) is executed.

• As the transition (1) becomes TRUE, the action of step (3) is turned off.

• Step (3) becomes inactive and step (4) becomes active.

• As continuous transitions are enabled, the action of step (4) is executed.

• As the transition (2) becomes TRUE, the action of step (4) is turned off.

• Step (4) becomes inactive and step (5) becomes active.

• As continuous transitions are enabled, the action of step (5) is executed.

• As the transition (6) does not become TRUE, the action of step (5) is not turned off.

(1)

(4)

(5)

(3)

(2)

(6)

(1)
8 SFC PROGRAM
8.4 SFC Information Devices 117

11
Number of Active Steps Register
The number of active steps of the specified block is stored in this register.

The number of active steps stored in the number of active steps register includes the following steps.

 • Normal active step

 • Coil HOLD step [SC] that holds the operation

 • Operation HOLD step (with transition check) [ST] that holds the operation

 • Operation HOLD step (without transition check) [SE] that holds the operation

 • Steps that stop each operation

■Precautions
 • When a block ends, the number of active steps register becomes 0.

 • The register does not become 0 when the SFC program ends but becomes 0 when the program starts.
8
8 SFC PROGRAM
8.4 SFC Information Devices

8

8.5 SFC Setting
Set start conditions and others of SFC program in CPU parameter or SFC block setting.

CPU parameter
The following table lists the SFC settings.

Keep the certain number of step relay (S) points before using the SFC program. (Default number of step relay

(S) points is 0.)

Set the number of step relay (S) points within the range of 1024 to 16384 points (in units of 1024 points) in

[CPU Parameter] [Memory/Device Setting] [Device/Label Memory Area Setting] [Device Setting].

Type Item Description

SFC Setting SFC Program Start Mode Setting Set whether to start with initial status (initial start) or to start holding the previous

execution status (resume start) at the start-up of SEC program.

Start Conditions Setting Set whether to automatically start and activate block 0 or to keep it inactive until a start

request is issued, when starting the SFC program.

Output Mode Setting at Block Stop Set whether to turn off the coil output or to hold it when stopping a block.
8 SFC PROGRAM
8.5 SFC Setting 119

12
SFC program start mode setting
Set whether to start with initial status (initial start) or to start holding the previous execution status (resume start) at the start-

up of SEC program.

[CPU Parameter]"SFC Setting""SFC Program Start Mode Setting"

Window

Displayed items

Whether an initial start or resume start will be made is determined by the combination of the SFC program start mode setting

and the SM322 (SFC program start mode) status.

*1 The initial status of SM322 is determined when STOP changes to RUN according to the setting of the SFC program start mode.
*2 When the resume start is set as the SFC program start mode, the program performs a resume start unless there is any change before

and after program writing.
*3 ON/OFF of the action is determined according to the setting of parameter "Output Mode of STOP to RUN".
*4 Depending on the timing, a resume start is disabled and an initial start may be made.

Setting Description

Initial Start

(default)

The program is started after the active status at a previous stop is cleared.

The operation after a start is performed according to the start condition setting of the SFC setting. (Page 122 Start

condition setting)

Resume Start The program starts while holding the active status at a previous stop.

Operation SFC program start mode setting is initial start SFC program start mode setting is resume
start

SM322: OFF
(Initial status)*1

SM322: ON
(When the setting is
changed)

SM322: ON
(Initial status)*1

SM322: OFF
(When the setting is
changed)

(1) SM321 is turned off and on. Initial Start Continue start Initial Start

(2) Power is turned off and on. Continue start/Initial start*4

(3) SM321 is turned on and off, or

power is turned off and on after

changing the operating status

from RUN to STOP.

Continue start

(4) Reset and RUN Continue start/Initial start*4

(5) SM321 is turned on and off, or

reset and RUN after changing the

operating status from RUN to

STOP.

Continue start

(6) Changing the operating status

from STOP to RUN

Continue start*3

(7) Operating status is STOP, write a

program, and changes to RUN

Initial Start*2
0
8 SFC PROGRAM
8.5 SFC Setting

8

■Precautions
 • At a resume start, the SFC program stop position is held but the status of the label or device used for the operation output

is not held. Therefore, make latch setting for the labels or devices whose statuses must be held in making a resume start.

 • At a resume start other than the conditions ((1), (3), (5) in the table) where the coil HOLD step is turned off, the coil HOLD

step [SC] that holds the operation is restarted but the output is not turned on. To continue the output, make latch setting for

the labels or devices desired to be continued. ON/OFF of the output at the time of changing STOP to RUN is determined

according to the setting of parameter "Output Mode Setting of STOP to RUN". MELSEC iQ-R CPU Module User's

Manual (Application)

 • At power off or reset operation, the intelligent function module is initialized. When making a resume start, it is

recommended to create an initial program for the intelligent function module in the block that is always active or in the

sequence program.

 • At power off or reset operation, labels and devices are also cleared. When the SFC information device is set, the values are

held only when latch setting is performed.

 • A resume start after power-off or reset operation may fail depending on the timing. If an initial start is performed when the

resume start is set, a resume start disable event is stored in the event history. To perform a resume start without fail, turn off

SM321 or switch the CPU module from RUN to STOP, and then power off or perform reset operation.
8 SFC PROGRAM
8.5 SFC Setting 121

12
Start condition setting
Set whether to automatically start and activate block 0 or to keep it inactive until a start request is issued, when starting the

SFC program.

[CPU parameter]"SFC Setting""Start Conditions Setting"

Window

Displayed items

Use the start condition setting when it is desired to specify the start block at SFC program start according to the product type.

"Auto-start block 0" is useful when block 0 is used as described below.

 • Used as a control block

 • Used as a preprocessing block

 • Used as an always watched block

■Precautions
 • To execute the SFC program when "Do not auto-start block 0" is set, execute the SET instruction (Starting a block) from the

sequence program or turn on the block START/END bit that is set in the SFC information device.

 • When "Auto-start block 0" is set, be sure to create block 0.

Setting Description

At SFC Program START At the end of block 0

Auto-start block 0

(default)

Block 0 is started automatically and starts execution from its

initial step.

Block 0 is restarted automatically and restarts execution from

its initial step.

Do not auto-start block 0 Block 0 is activated by a start request resulting from the SET

(Starting a block) instruction or a block start step, in the same

manner as other blocks.

Block 0 is not restarted automatically and remains inactive

until another start request is issued.
2
8 SFC PROGRAM
8.5 SFC Setting

8

Output mode setting at block stop
Set whether to turn off the coil output or to hold it when stopping a block.

[CPU parameter]"SFC Setting""Output Mode Setting at Block Stop"

Window

Displayed items

 • The settings made are reflected to the initial value of SM325 (Output mode at block stop) at power-on, reset, or switching

from STOP to RUN, and follow the settings of SM325 when the SFC program operates. CPU parameter settings are

ignored.

Setting Description

Turn OFF

(default)

Coil output is turned off.

Keep ON Coil output is held in the state (coil output hold) immediately before stop.
8 SFC PROGRAM
8.5 SFC Setting 123

12
■Operation when the block is paused or restarted
Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,

block stop mode bit setting of the SFC information device, and step hold status.

The following table lists the operations at block PAUSE/RESTART.

■Precautions
 • Even a stopped block is detected as ON by using the LD instruction (Checking the state of a block). Also, even a step that

stops its operation is detected as ON by the LD instruction (Checking the state of a step).

 • If the block is started while the PAUSE/RESTART bit of the SFC information device is on, the initial step stops before it

becomes active. If the SET instruction (Activating a step) is executed for an inactive block, the specified step stops before it

becomes active.

 • When SM325 (Output mode at block step) is on, the block can be stopped while holding the coil output. Even when SM325

is turned on and off in stopped state, the state of the coil output does not change. When a block restart request is issued,

the coil output restarts while keeping the hold state.

 • If the block is stopped when SM325 is on, the coil HOLD step [SC] in the hold state keeps its state even after restart but the

step operation does not restart. To make the coil HOLD step [SC] inactive, execute the RST instruction (Deactivating a

step).

 • When a stop request is issued in the action to the block, the step being executed currently is executed until it ends, and

then the stop request is executed. Therefore, when the block stop mode bit is off (immediate stop), the step being executed

does not stop even if a stop request is issued within the step. If the block stop mode bit is changed to on (stop after

transition) afterwards in the same step, a stop request is executed in stop mode after transition.

Output mode
setting at block
stop

Setting of block
stop mode bit

Operation

Active step other than step
that holds operation
(including SC, SE, and ST
whose transition does not
become TRUE)

Step that holds operation

Coil HOLD step
[SC]

Operation HOLD
step (without
transition check)
[SE]

Operation HOLD
step (with
transition check)
[ST]

SM325 = OFF

(coil output OFF)

OFF or no setting

(immediate stop)

Immediately after a stop request

is made, the coil output of the

action is turned off and the block

is stopped. The status remains

active.

Immediately after a

stop request is made,

the coil output of the

action is turned off and

the block is

deactivated.

Immediately after a stop request is made, the

coil output of the action is turned off and the

block is stopped. The status remains active.

On

(stop after transition)

After the transition becomes

TRUE, step end processing is

performed and simultaneously the

transition destination step

becomes active and the block is

stopped before execution of the

action.

SM325 = ON

(coil output held)

OFF or no setting

(immediate stop)

Immediately after a stop request

is made, the block is stopped with

the coil output of the action being

held. The status remains active.

Immediately after a stop request is made, the block is stopped with the

coil output of the action being held. The status remains active.

On

(stop after transition)

Normal operation is performed

until the transition becomes

TRUE. After the transition

becomes TRUE, step end

processing is performed and

simultaneously the transition

destination step becomes active

and the block is stopped before

execution of the action.

At restart Returns to normal operation. Coil output is off:

Becomes inactive and

restart is disabled

Coil output is held:

Restarts with the hold

state

Restarts the execution

of the action in a

HOLD status.

In the hold status, the

action is restarted and

the transition is also

checked.
4
8 SFC PROGRAM
8.5 SFC Setting

8

Ex.

M100 is the block stop mode bit and M101 is the block PAUSE/RESART bit.

 • If the RST instruction (Deactivating a step) is executed while the block is stopped, the specified step relay is turned off.

However, the monitor of the engineering tool keeps showing the active status and changes to inactive when the block is

restarted. The same is also true when the instruction is executed while the block is stopped by turning on SM325 (holding

the coil output when the block is stopped), but the coil output is not turned off.

 • The SET instruction (Activating a step) is executed immediately even while the block is stopped and the specified step relay

is turned on. The display on the monitor of the engineering tool also shows the active status. However, the action is

executed only after the block is restarted.

Ex.

Block PAUSE/RESTART when the RST instruction (Deactivating a step) is used

 • If the block stop mode bit (stop after transition mode) is turned off while a step in a state that is waiting to stop operation

after transition exists, the step remains in that state. To immediately stop after clearing this state, restart the block and issue

a stop request again while the block stop mode bit is off.

 • When the step transition destination is an end step in stop after transition mode, end step processing is executed and

therefore the step is not put in the stopped state.

 • To check that a stop request has been issued, monitor the block list display of the engineering tool or monitor the bit that

has been set in the block PAUSE/RESTART bit. However, whether the step is in stop state or operating to wait to stop

cannot be checked from the monitor of the engineering tool.

 • The stop after transition state can be cleared by turning off the block PAUSE/RESTART bit or executing the RESTART

instruction before the transition becomes TRUE. If a restart request is issued while steps that is already stopped and steps

that is waiting to stop operations coexist, the former starts and the latter continues the operation. The stop request is

cleared.

If M0 is turned on during execution of the above action, the PAUSE instruction is executed and the block PAUSE/RESTART bit (M101) of Block0 is turned on but

the execution continues to the end of the action, so Y0 is turned on.

When M2 is on, the block stop mode bit is turned on even after execution of the PAUSE instruction and, after the actions are all executed, a stop request is

executed in stop mode after transition.

(1) When M0 is turned on, block 0 is stopped.

(2) When M1 is turned on, a termination request is executed for step No. 0 and BL0\S0 of the step relay is turned

off but step No. 0 is left active on the monitor of the engineering tool.

(3) BL0\S0 is turned off, so Y0 is also turned off.

(4) When M2 is turned on while M0 and M1 are off, block 0 restarts and step No. 0 ends.

Block0

M101 Y0

M0
BL0PAUSE

M2
M100SET

SM400
M100RST

Y0

M1
RST

M2
BL0RSTART

M0
BL0PAUSE

BL0\S0

BL0\S0
8 SFC PROGRAM
8.5 SFC Setting 125

12
SFC block setting

Operation mode when an active block is activated ("Act at Block Multi-Activated")
Set the operation mode to stop the operation of the CPU module when a start request is issued by the block start step [BC or

BS] for an already active block. For the setting range, set the range of the block to be stopped.

"Navigation window" "Program" Properties of SFC program file to be set

Window

Displayed items

■Precautions
 • When the SET instruction (Activating a block) is executed for the block that is already active, the start request is ignored

and the processing of the SFC program is continued as is.

 • If an attempt to transition to an active block start step is made, the activation of the block start step is ignored. The block is

not executed again from the initial step.

(1) Set the range of the block to be stopped.

Setting Description

No Setting

(default)

Stand

by

CPU module operation continues, and standby until the start destination block becomes inactive while the

transition becomes TRUE.

When the start destination block is deactivated, the block is reactivated.

If a transition in standby state, the previous step is deactivated, the output is switched OFF, and the action

will not be executed.

Block stop range is set. Stop An error results.

(1)

BL1
6
8 SFC PROGRAM
8.5 SFC Setting

8

8.6 SFC Program Execution Order

Whole program processing

Execution type that can be specified
This section shows whether the execution type of SFC program can be specified.

■Precautions
When no scan execution type SFC program exists (only standby type program), do not execute an SFC control instruction

and monitoring for an SFC program.

Execution Type Specification
enable/disable

Remarks

Initial execution type program

Scan execution type program Only one SFC program can be executed.

Standby type program By specifying the SFC program by using the PSCAN instruction, this type of program can be

changed to the scan execution type.

Event execution type program

Fixed scan execution type

program

CPU module: RUN

Initial execution
type program

Scan execution
type program

Standby type
program

Event execution
type program

Fixed scan
execution type
program

Execute using
an interrupt.

Execute only when required.

Type that can be specified as
an SFC program
8 SFC PROGRAM
8.6 SFC Program Execution Order 127

12
Changing the execution type by an instruction
The execution type of a program can be changed by using a program control instruction.

The following table lists program control instructions with regard to whether an SFC program can be specified.

■Precautions
 • Do not use the PSCAN instruction to read/write a file from/to the CPU module or use the data logging function. If the

PSCAN instruction is executed, the scan time may extend several hundred milliseconds.

 • When the SFC program, which is different program from the one operated last time, is operated by using the PSCAN

instruction while specifying resume start, the specified SFC program performs the initial start. In this case, "SFC program

continuous start not possible" (event code: 0430) is saved in the event history.

Instruction symbol Specification
enable/disable

Remarks

PSCAN Changes the execution type of the specified SFC program to the scan execution type.

If this instruction is executed with another SFC program specified while an scan execution type SFC

program already exists, an error occurs.

PSTOP If this instruction is executed for an SFC program, an error results.

POFF Executes end processing of all blocks in the next scan and changes the execution type of the

specified SFC program to the standby type in the following scan.

Scan execution type
program

Standby type
program

PSCAN
instruction

POFF
instruction
8
8 SFC PROGRAM
8.6 SFC Program Execution Order

8

SFC program processing sequence

Block execution sequence
While the SFC program is running, the actions of each step are executed sequentially starting from the initial step of an active

block.

An SFC program involving multiple blocks checks the activities of the blocks in ascending order of block numbers, from block

0 to block 1 and block 2.

An active block executes the actions of active steps in the block.

An inactive block checks for existence of a start request. If a start request exists, the block is activated and the active steps in

the block are executed.

Only block 0 can be started automatically when the block 0 autostart is specified in the start condition setting of the SFC

setting. With this setting, even when block 0 reaches the end step and becomes inactive, it is started again in the next scan.

(Page 122 CPU parameter)

A request for END, PAUSE, RESTART of a block is processed immediately before execution processing in the block.

Processing is performed in the following order.

(1) Processing of block 0 (BL0)

(2) Execution of the step of block 0 (BL0)

(3) Processing of block 1 (BL1)

(4) Execution of the initial step of block 1 (BL1)

(5) Processing of the next block

BL0 BL1
(1) (3)

(4)

(2)

(5)
8 SFC PROGRAM
8.6 SFC Program Execution Order 129

13
Step execution sequence
In the SFC program, the actions of all active steps are processed within one scan.

When the action of each step is finished, whether the transition to the next step becomes TRUE or not is checked.

 • When the transition has not become TRUE: The action of the same step is executed again in the next scan.

 • When the transition has become TRUE: The outputs of the executed actions by using the OUT instruction are all turned off.

When the next scan is executed, the action of the next step is executed. The step executed previously is deactivated and

the action becomes inactive.

Even when the transition becomes TRUE, if coil HOLD step [SC] is set in the step attribute, the step is not deactivated but

performs processing according to the attribute. (Page 89 Coil HOLD step [SC])

Ex.

The continuous transition bit of an SFC information device is not specified.

(1) Execution of sequence program

(2) Execution of action

(3) Checking the transition to the next step

(FALSE)

(4) END processing

(5) Checking the transition to the next step (TRUE)

(6) The next action is executed.

Scan Description

Scan 1 Step (1) is activated and the action (2) is executed.

Scan 2 Step (3) is activated and the action (4) is executed.

Scan 3 Step (5) is activated and the action (6) is executed.

Scan 4 Step (7) is activated and the action (8) is executed.

Scan 5 and after Step (7) is active until the transition (9) becomes TRUE, and the action (8) is executed.

All the active steps in the
block are executed within
a single scan.

(1) (2) (3) (4) (1) (2) (5) (1) (6)(4)

STOP→RUN
(SM321=ON)

1 scan 1 scan 1 scan

(1) (2)

(3) (4)

(5) (6)

(7)

(9)

(8)
0
8 SFC PROGRAM
8.6 SFC Program Execution Order

8

■Precautions
 • As a step for which the transaction becomes TRUE at the first execution is deactivated in a single scan, the input/output

refresh of coil output is not reflected and therefore other programs cannot detect that the coil output is on. To reflect the

input/output refresh, create a program so that one step is executed in multiple scans.

 • The actions of active steps in a block are executed simultaneously (within the same scan). For this reason, do not create

SFC programs which depend on the execution sequence of actions.
The execution sequence of actions (1), (2), and (3) are undefined.

(1) (3)

(2)
8 SFC PROGRAM
8.6 SFC Program Execution Order 131

13
Continuous transition ON/OFF operation
There are two types of transitions in SFC program: "Continuous transition" and "No continuous transition".

The setting of the type (Continuous transition or No continuous transition) is determined by the settings of the continuous

transition bit of the SFC information device and SM323 (Setting continuous transition to all blocks).

The tact time can be shortened by setting "Continuous transition". This resolves the problem of waiting time

from when the transition becomes TRUE until the action of the transition destination step is executed.

However, when "Continuous transition" is set, the operations of the other blocks and sequence program may

become slower.

Continuous
transition bit

SM323 Description

No setting Off No continuous

transition

When the transition becomes TRUE, the action of the transition destination step is executed in the

next scan.

On Continuous

transition

When the transition becomes TRUE, the action of the transition destination step is executed within

the same scan.

When the transitions of the steps become TRUE continuously, the actions are executed within the

same scan until the transition becomes FALSE or the end step is reached.

Off On or off No continuous

transition

When the transition becomes TRUE, the action of the transition destination step is executed in the

next scan.

On On or off Continuous

transition

When the transition becomes TRUE, the action of the transition destination step is executed within

the same scan.

When the transitions of the steps become TRUE continuously, the actions are executed within the

same scan until the transition becomes FALSE or the end step is reached.
2
8 SFC PROGRAM
8.6 SFC Program Execution Order

8

8.7 SFC Program Execution

Starting and stopping the SFC program
The SFC program can be started and stopped by either of the following methods.

 • CPU parameter

 • Starting and stopping the program by the special relay (SM321)

 • Starting and stopping the program by using instructions

CPU parameter
Set “Auto-start block 0” to “Start Conditions Setting” in the CPU parameter. Block 0 of the SFC program starts automatically

when the system is powered on, the CPU module is reset, or the operating status of the CPU module is changed from STOP

to RUN. (Page 122 Start condition setting)

Starting and stopping the program by the special relay (SM321)
SM321 (SFC program start/stop) automatically turns on at execution of the SFC program. Once executed, the start/stop

status is controlled by SM321.

 • The program execution can be stopped by turning off SM321.

 • The program execution can be restarted by turning on SM321.

The resume start of the SFC program can be set in the CPU parameter (“SFC Program Start Mode Setting”).

(Page 120 SFC program start mode setting)

Starting and stopping the program by using instructions
The SFC program is started and stopped by using the program control instructions. (Page 128 Changing the execution

type by an instruction)

 • The standby type SFC program is started by using the PSCAN instruction. The program execution type changes from the

standby type to the scan execution type.

 • Outputs are turned off and the SFC program is stopped by the POFF instruction. The program execution type changes from

the scan execution type to the standby type.
8 SFC PROGRAM
8.7 SFC Program Execution 133

13
Starting and ending a block

Starting a block
A block in the SFC program can be started by either of the following methods.

Ending a block
A block in the SFC program can be ended by either of the following methods.

Item Method Remarks Reference

CPU parameter

(auto start, only for block 0)

Set “Auto-start block 0” to “Start Conditions Setting” in the

CPU parameter. When the SFC program is executed,

block 0 starts automatically and processing is performed

sequentially from the initial step.

This method is used to use block 0

as a control block, preprocessing

block, or continuous monitoring

block.

Page 122 Start

condition setting

Block start step Start another block by using a block start step [BC or BS]

in a block.

This method is effective when the

control sequence is clear.

Page 92 Block

start step (with END

check) [BC]

Page 93 Block

start step (without END

check) [BS]

SFC control instruction Start the block specified by the SFC control instruction

used in the action of the SFC program or in another

sequence program.

• Use the SET [BL] (Starting a block) instruction to

execute the program from the initial step of the

specified block.

• Use the SET [S/BL\S] (Activating a step)

instruction to execute the program from the specified

step of the specified block.

This method is effective to restart

the error processing block or

execute interrupt processing.

Page 109 SFC

Control Instructions

SFC information device Start the specified block by turning on the block START/

END bit set to each block.

This method is effective for

debugging (in units of blocks) and

test operation because blocks can

be restarted even from external

devices.

Page 112 Block

START/END bit

Engineering tool Start the specified block by turning on the SFC block

device.

This method is effective for

debugging and test operation.

 GX Works3

Operating Manual

Item Method Remarks Reference

End step Execute the end step in a block. Processing is stopped

and the block becomes inactive.

This method is effective to stop

operation by stopping a cycle in

automatic operation.

Page 94 End step

SFC control instruction End and deactivate the block specified by the RST [BL]

(Ending a block) instruction used in the action of the SFC

program or in another sequence program.

(The block ends when all the active steps in the specified

block are deactivated by using the RST [BL\S]

(Ending a block) instruction.)

This method is effective to end

processing regardless of the

operation status, such as an

emergency stop.

Page 109 SFC

Control Instructions

SFC information device End the specified block by turning off the block START/

END bit set to each block.

This method is effective for

debugging (in units of blocks) and

test operation because blocks can

be ended even from external

devices.

Page 112 Block

START/END bit

Engineering tool End the specified block by turning off the SFC block

device.

This method is effective for

debugging and test operation.

 GX Works3

Operating Manual
4
8 SFC PROGRAM
8.7 SFC Program Execution

8

Pausing and restarting a block

Pausing a block
The specified block in the SFC program being executed can be paused by either of the following methods.

Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,

block stop mode bit setting of the SFC information device, and step hold status. (Page 124 CPU parameter)

Restarting a block
The paused block in the SFC program can be restarted by either of the following methods.

Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,

block stop mode bit setting of the SFC information device, and step hold status. (Page 124 CPU parameter)

Item Method Remarks Reference

SFC control instruction Pause the block specified by the PAUSE [BL] (Pausing

a block) instruction used in the action of the SFC

program or in another sequence program.

This method is effective to clear the

error by temporarily stopping the

machine and operating it manually.

Page 109 SFC

Control Instructions

SFC information device Pause the specified block by turning on the block

PAUSE/RESTART bit set to each block.

This method is effective for

debugging and test operation

because blocks can be paused

even from external devices.

Page 115 Block

PAUSE/RESTART bit

Item Method Remarks Reference

SFC control instruction Restart the block specified by the RSTART [BL]

(Restarting a block) instruction used in the action of

blocks other than the paused block in the SFC program

or in another sequence program.

This method is effective in operating

the machine automatically again

after it is stopped temporarily and

operated manually.

Page 109 SFC

Control Instructions

SFC information device Restart the specified block by turning off the block

PAUSE/RESTART bit set to each block.

This method is effective for

debugging (in units of blocks) and

test operation because blocks can

be restarted even from external

devices.

Page 115 Block

PAUSE/RESTART bit
8 SFC PROGRAM
8.7 SFC Program Execution 135

13
Activating and deactivating a step

Activating a step
A step in the SFC program can be activated by either of the following methods.

Deactivating a step
A step in the SFC program can be deactivated by either of the following methods.

Item Method Remarks Reference

Transition condition The transition is checked at the end of the step. If it is

TRUE, the next step is automatically activated.

 Page 101

Transition

SFC control instruction Activate the step specified by the SET [S/BL\S]

(Activating a step) instruction used in the action of the

SFC program or in another sequence program.

 Page 109 SFC

Control Instructions

Engineering tool • Activate the specified step by turning on the step relay.

• Activate the selected step from the menu [Debug]

[Control SFC Steps].

This method is effective for

debugging and test operation.

 GX Works3

Operating Manual

Item Method Remarks Reference

Transition condition The transition is checked at the end of the step. If it is

TRUE, the current step is automatically deactivated.

 Page 101

Transition

Reset step [R] Activating this step deactivates the specified step. This method is effective to

deactivate HOLD steps when the

sequence for error processing is

selected in the selection branch.

Page 92 Reset

step [R]

SFC control instruction Deactivate the step specified by the RST [S/BL\S]

(Deactivating a step) instruction used in the action of the

SFC program or in another sequence program.

When all the active steps in the

specified block are deactivated by

using the RST instruction, the block

also ends.

Page 109 SFC

Control Instructions

Engineering tool • Deactivate the specified step by turning off the step

relay.

• Deactivate the selected step from the menu [Debug]

[Control SFC Steps].

This method is effective for

debugging and test operation.

 GX Works3

Operating Manual
6
8 SFC PROGRAM
8.7 SFC Program Execution

8

Behavior when an active step is activated
When an active step is activated, the step behaves as follows.

Series sequence

Selective sequence

■Divergence
Transitions are checked from left to right. If the step connected to the transition having a TRUE value is active, the steps

behave in the same way as in the series sequence. After the first TRUE path is taken, transitions are no longer checked.

■Convergence
The steps behave in the same way as in the series sequence.

Simultaneous sequence

■Divergence
If any one of the steps in divergence of the simultaneous sequence is active, all steps below the transition become active in

the next scan.

■Convergence
All steps above the transition become inactive. (HOLD steps hold values.)

When the transition (2) becomes TRUE, the step (1) becomes inactive.

When the transition (2) becomes TRUE, the step (1) becomes

inactive.

When the transition (1) becomes

TRUE, the steps (2) to (5) become

active in the next scan.

(1)

(2)

(1)

(2)

(1)

(2)
(3)

(4) (5)
8 SFC PROGRAM
8.7 SFC Program Execution 137

13
Operation when a program is modified
When an SFC program is modified by writing data to the programmable controller or online change, the SFC program

operates as follows.

When data is written to the programmable controller
The SFC program operates as follows.

Values of devices and labels used in the SFC program will be as follows depending on the setting of SM326 (SFC device/label

clear mode).

*1 The setting of SM326 is valid only when an SFC program exists after data is written to the programmable controller. It is also valid when
a program file or parameter file is written to the programmable controller. It will be invalid when only the common device comment file,
device memory file, or device initial value file is written.

*2 Even when the device is not latched, data is not cleared.

■Precautions
 • After an SFC program is modified by writing data to the programmable controller, reset the CPU module, and execute the

SFC program.

 • If “Resume Start” is set to “SFC Program Start Mode Setting” in the CPU parameter, turn off SM322 (SFC program start

mode) first, and modify the program by writing data to the programmable controller. Thereafter, initial-start the SFC program

and then turn on SM322 (resume start) again.

When online change is executed
After an SFC program is modified by online change, the resume start is performed regardless of the CPU parameter setting

(“SFC Program Start Mode Setting”).

When the operating status is changed from STOP to RUN
If the CPU module is stopped during execution of the SFC program, the device values and active/inactive status of the SFC

program immediately before the stop are held and restored after the operating status is changed back to RUN. the resume

start is performed regardless of the CPU parameter setting (“SFC Program Start Mode Setting”).

If any of the sequence program file (including an SFC program), FB file, or parameter file (such as CPU parameter file and

system parameter file) is written to the CPU module while it is in the STOP state, the SFC program will be executed initially

when the operating status is changed back to RUN. Note that the resume start may be performed if there is no change in the

SFC program after the program file is written. (Page 120 SFC program start mode setting)

SM322 (SFC program start mode) Program modification status

Modified Not modified

Off: Initial start Initial start Initial start

On: Continue start Initial start Continue start

SM326 (SFC device/label clear mode)*1 Description

Off Values of devices and labels, excluding the following, are cleared, and the SFC program is

executed.

• Step relay (S)

• File register (R/ZR)*2

• Latched labels

On Values of devices and labels, excluding the step relay (S), are held, and the SFC program is

executed.
8
8 SFC PROGRAM
8.7 SFC Program Execution

8

Checking SFC program operation
Use the following functions of the engineering tool to check SFC program operation.

 • Monitor

 • Watch

 • Device/buffer memory batch monitor

 • Control SFC steps

 • SFC block list

 • SFC all blocks batch monitor

 • Active step monitor

For details on each functions and operation check methods, refer to the following.

 GX Works3 Operating Manual
8 SFC PROGRAM
8.7 SFC Program Execution 139

14
INDEX

Symbols

- . 56
* . 56
**. 56
/ . 56
&. 56
+ . 56
< . 56
<= . 56
<> . 56
= . 56
> . 56
>= . 56
$. 43

A

AND . 56
ASCII. 35,68,78
Assignment statement . 58

B

BC. 87
Block start step (with END check) 87
Bit . 35
Block PAUSE/RESTART Bit. 111
Block START/END Bit 111
Block Stop Mode Bit . 111
BOOL . 35
Block start step (without END check). 87
BS. 87
Buffer memory . 7

C

CASE . 61
Class . 37
Coil HOLD step [SC] . 87
Constants. 43
Continuous Transition Bit 111
Conversion of data type 58,73
COUNTER . 35,36
Counter . 35,36

D

Data type . 35,36,37
Detailed expression. 101
Device . 7
Device assignment . 33
DINT . 35
Direct expression . 101
Double word [signed]. 35
Double word [unsigned]/bit string [32 bits] 35
Double-precision real number. 35
DWORD . 35

E

EN. 14,24

End step .87
ENO . 14,24
EXIT .62
External variable. .19

F

FB/FUN file . 14,15,24,25
FBD/LD .8
FOR...DO . 62,66
Function (FUN). .12,13,34
Function block (FB).12,18,34
Function block call statement59
Function call statement .59

G

Generic data type (ANY type) 37
Global label .33,34,37

I

IF THEN .61
IF...ELSE. .61
IF...ELSEIF .61
Initial step .87
Input variable . 13,19
Input/output variable .19
Instance .20
INT .35
Internal variable .19
Interrupt program .11

J

Jump sequence .102

L

Label. .7
Label/device. .101
Ladder diagram . 8,49
LCOUNTER. 35,36
Local label .33,34,37
Long counter . 35,36
Long retentive timer 35,36
Long timer . 35,36
LREAL .35
LRETENTIVETIMER. 35,36
LTIMER. 35,36

M

Macro type function block 25,26
Main routine program .11
MOD .56
Module label .33

N

Normal step .87
0

I

NOT . 56
Note . 53
Number of Active Steps Register 111
Number of array elements 39
Number of steps . 16

O

Operation HOLD step (with transition check) [ST]
. 87
Operation HOLD step (without transition check) [SE]
. 87
OR . 56
Output Mode Setting at Block Stop 119
Output variable . 13,19

P

POINTER. 35
Pointer . 35
Program. 10,14,24
Program block . 11,34
Program file . 10
Programming language . 8
Project . 10

R

R. 87
Reset step . 87
REAL. 35
REPEAT...UNTIL . 62
Reserved word . 55
Retentive timer . 35,36
RETENTIVETIMER. 35,36
RETURN . 60

S

Safety communications . 7
Safety control . 7
Safety device . 7
Safety function (Safety FUN) 31
Safety function block (Safety FB) 32
Safety global label. 46
Safety local label. 46
Safety program. 7
Selective sequence (divergence/convergence). . 102
Series sequence . 102
SFC program . 8
SFC Program Start Mode Setting 119
Shift JIS . 35,68,78
Simultaneous sequence (divergence/convergence)
. 102
Single-precision real number 35
Standard communications 7
Standard control . 7
Standard CPU . 7
Standard device . 7
Standard program . 7
Standard/safety shared label 46
Start Conditions Setting 119
Statement . 53
Step Transition Bit. 111
STRING. 35,68,78
String. 35,68,78

String [Unicode] .35,68,78
Structure . 36,41
Structure array .42
Structured text (ST) .8
Subroutine program .11
Subroutine type function block 25,26
System label .33

T

TIME .35
Time .35
TIMER. 35,36
Timer . 35,36
Transition name .101
Transition No .101
Type specifier. 69,78

U

Unicode. 35,68

W

WHILE...DO. .62
WORD .35
Word [signed]. .35
Word [unsigned]/bit string [16 bits]35
WSTRING .35,68,78

X

XOR .56
141

142

REVISIONS
*The manual number is given on the bottom left of the back cover.

Japanese manual number SH-081225-D

 2014 MITSUBISHI ELECTRIC CORPORATION

Revision date *Manual number Description

June 2014 SH(NA)-081265ENG-A First edition

February 2015 SH(NA)-081265ENG-B ■Added or modified parts

Chapter 1, Section 4.7, 6.1, Chapter 7

August 2015 SH(NA)-081265ENG-C ■Added or modified parts

CONDITIONS OF USE FOR THE PRODUCT, TERMS, Chapter 1, Section 2.1, 3.1, 3.2, 3.3, 3.4, 4.3,

4.8, 6.1, Chapter 8, WARRANTY

This manual confers no industrial property rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held

responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

143

WARRANTY
Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range
If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product
within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service
Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at
the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing
on-site that involves replacement of the failed module.
[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.
Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and
the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair
parts shall not exceed the gratis warranty term before repairs.
[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which

follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the
product.

(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused

by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions

or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by
industry standards, had been provided.

4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the
instruction manual had been correctly serviced or replaced.

5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force
majeure such as earthquakes, lightning, wind and water damage.

6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production
(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.

Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service
Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA
Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability
Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation of damages caused by any cause
found not to be the responsibility of Mitsubishi, loss in opportunity, lost profits incurred to the user by Failures of
Mitsubishi products, special damages and secondary damages whether foreseeable or not, compensation for accidents,
and compensation for damages to products other than Mitsubishi products, replacement by the user, maintenance of
on-site equipment, start-up test run and other tasks.

5. Changes in product specifications
The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

144

TRADEMARKS
Microsoft, Windows, Windows Vista, Windows NT, Windows XP, Windows Server, Visio, Excel, PowerPoint, Visual Basic,

Visual C++, and Access are either registered trademarks or trademarks of Microsoft Corporation in the United States, Japan,

and other countries.

Intel, Pentium, and Celeron are either registered trademarks or trademarks of Intel Corporation in the United States and other

countries.

Ethernet is a trademark of Xerox Corp.

The SD and SDHC logos are either registered trademarks or trademarks of SD-3C, LLC.

All other company names and product names used in this manual are either trademarks or registered trademarks of their

respective companies.

SH(NA)-081265ENG-C

SH(NA)-081265ENG-C(1508)MEE

MODEL: R-P-PS-E

Specifications subject to change without notice.

When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission.

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

	SAFETY PRECAUTIONS
	CONDITIONS OF USE FOR THE PRODUCT
	INTRODUCTION
	CONTENTS
	RELEVANT MANUALS
	TERMS
	1 OVERVIEW
	2 PROGRAM CONFIGURATION
	2.1 Program Blocks

	3 PROGRAM ORGANIZATION UNITS
	3.1 Functions (FUN)
	3.2 Function Blocks (FB)
	3.3 Precautions
	3.4 When a Safety Program Is Used
	Safety functions (Safety FUN)
	Safety function blocks (Safety FB)

	4 LABELS
	4.1 Label Types
	4.2 Classes
	4.3 Data Types
	4.4 Arrays
	4.5 Structures
	4.6 Constants
	4.7 Precautions
	4.8 When a Safety Program Is Used
	Safety label types
	Classes
	Data types
	Structures

	5 LADDER DIAGRAM
	5.1 Configuration
	Ladder symbols
	Program execution order

	5.2 Inline ST
	5.3 Statements and Notes

	6 STRUCTURED TEXT LANGUAGE
	6.1 Configuration
	Delimiters
	Operators
	Control statements
	Constants
	Labels and devices
	Comments

	7 FBD/LD
	7.1 Configuration
	Program elements
	Worksheet
	Constant
	Labels and devices

	7.2 Program Execution Order
	Execution order of program elements

	8 SFC PROGRAM
	8.1 Specifications
	8.2 Structure
	Block
	Step
	Action
	Transition

	8.3 SFC Control Instructions
	8.4 SFC Information Devices
	8.5 SFC Setting
	CPU parameter
	SFC block setting

	8.6 SFC Program Execution Order
	Whole program processing
	SFC program processing sequence

	8.7 SFC Program Execution
	Starting and stopping the SFC program
	Starting and ending a block
	Pausing and restarting a block
	Activating and deactivating a step
	Behavior when an active step is activated
	Operation when a program is modified
	Checking SFC program operation

	INDEX
	REVISIONS
	WARRANTY
	TRADEMARKS

