MITSUBISH

MOTION CONTROLLER (SV13/22SFC)

Programming Manual

type A172SHCPUN, A173UHCPU(-S1), A273UHCPU-S3

INTORODUCTION

Thank you for choosing the motion controller.
Before using the equipment, please read this manual carefully to use it to its optimum. Please forward this manual to the end user.

Safety Instructions

Do not attempt to install, operate, maintain or inspect this product until you have read through these safety instructions carefully and can use the equipment correctly. Do not use this product until you have a full knowledge of the equipment, safety information and instructions. In this manual, the safety instruction levels are classified into "WARNING" and "CAUTION".

WARNING

CAUTION

WARNING Denotes that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

CAUTION Denotes that incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause physical damage only.

CAUTION Denotes that incorrect handling may cause hazardous conditions, resulting in medium or slight injury, or may cause physical damage only.

SAFETY PRECAUTIONS

1. For Electric Shock Prevention

WARNING

While power is on or the equipment is running, do not open the front casing and terminal cover. Doing so can cause an electric shock.
« ${ }^{\wedge}$ Do not run the equipment with the front casing and terminal cover removed. The exposed high-voltage terminals and charging part can cause an electric shock.
4 4 If power is off, do not remove the front casing and terminal cover except for wiring or periodic inspection. The controller and servo amplifier insides are charged and can cause an electric shock.
(4) Before starting wiring or inspection, switch power off, wait for more than 10 minutes, and check that there are no residual voltages with a tester or the like. Not doing so can cause an electric shock.
4 Use the class 3 or higher grounding method to earth the controller, servo amplifiers and servo motors. In addition, do not share grounding with other equipment.
4) Any person who is involved in the wiring or inspection of this equipment should be fully competent to do the work.
4 Start wiring after installing the controller, servo amplifiers and servo motors. Not doing so can cause an electric shock or injury.
〈 4 Operate the switches with dry hands to prevent an electric shock.
4 Do not subject the cables to scratches, excessive stress, heavy loads or pinching. Doing so can cause an electric shock.
4 While power is on, do not touch the terminal blocks of the controller, servo amplifiers and servo motors. Doing so can cause an electric shock.
4 Do not touch the internal power supplies, internal grounds and signal wires of the controller and servo amplifiers. Doing so can cause an electric shock.
2. For fire prevention

CAUTION

Mount the controller, servo amplifiers, servo motors and regenerative brake resistors to incombustibles. Mounting them directly or near combustibles can cause a fire.
If the controller or servo amplifier has failed, switch power off on the power supply side of the servo amplifier. A continuous flow of large current can cause a fire.
When using a regenerative brake resistor, switch power off with an alarm signal. A regenerative brake transistor failure or the like can overheat the regenerative brake resistor abnormally, causing a fire.
Provide anti-thermal measures such as flame-retarding treatment for the control box inside surfaces, where the servo amplifiers and regenerative brake resistors are installed, and the wires used.

3. For injury prevention

CAUTION

To each terminal, apply only the voltage specified in the A173UHCPU/A172SHCPUN/A171SHCPUN user's manual or the A273UHCPU user's manual and the instruction manuals of the products in use. Not doing so can cause burst, damage, etc.
A Ensure that the cables are connected to the correct terminals. Wrong connection can cause burst, damage, etc.
Always make sure that polarity is correct. Wrong connection can cause burst, damage, etc.
While power is on or for some time after power-off, do not touch the servo amplifier radiating fins, regenerative brake resistors, servo motors, etc. as they are hot and you may get burnt.
Switch power off before touching the servo motor shaft and the machine coupled there. Not doing so can cause injury.
\. Stay away from the machine while it is being test-run or taught, for example. Not doing so can cause injury.

4. Additional Instructions

Also note the following points. Incorrect handling can cause a failure, injury, electric shock or the like.
(1) For system construction

CAUTION

4. Install earth leakage breakers for the power supplies of the controller and servo amplifiers. When the instruction manuals of the servo amplifiers and like used specify that powering-off magnetic contactors must be installed for error occurrence, install magnetic contactors.
5. To ensure an immediate operation stop and power-off, install an external emergency stop circuit.
. When using the controller, servo amplifiers, servo motors and regenerative brake resistors, combine them as specified in the A173UHCPU/A172SHCPUN/A171SHCPUN user's manual or the A273UHCPU user's manual and the instruction manuals of the products in use. Not doing so can cause a fire or failure.
〔. When the system using the controller, servo amplifiers and servo motors has safety standards (e.g. safety rules for robots), the system must satisfy the safety standards. If the abnormal operations of the controller and servo amplifiers differ from the safetydirection operation of the system, configure up remedial circuits outside the controller and servo amplifiers.
6. Use dynamic brakes with the servo motors if the coasting of the servo motor can cause a problem at an emergency stop, servo-off or power-off in the system.
7. Even if dynamic brakes are used, the coasting distance must be taken into consideration in the system.
8. If a vertical shaft drop can cause a problem at an emergency stop, servo-off or power-off in the system, use the dynamic brakes and electromagnetic brakes together.
Use dynamic brakes for only an error which will occur at an emergency stop or servo-off, and do not use them for normal braking.

CAUTION

4．The brakes（electromagnetic brakes）built in the servo motors are designed for holding．Do not use them for normal braking．
．Configure up the system to ensure that it has such mechanical allowances that the axes can stop if they pass through stroke end limit switches at maximum speeds．
4．The wires and cables used should have the wire diameters，heat resistance and flex resistance conforming to the system．
4．The wires and cables used should have the lengths specified in the A173UHCPU／A172SHCPUN／A171SHCPUN user＇s manual or the A273UHCPU user＇s manual and the instruction manuals of the products in use．
4．The parts（other than the controller，servo amplifiers and servo motors）used with the system should be compatible in ratings and characteristics with the controller，servo amplifiers and servo motors．
4．To ensure that the rotary parts of the servo motors can never be touched during operation， provide the shafts with covers or the like．
．Due to its life or mechanical structure（e．g．when a ballscrew and the servo motor are coupled via a timing belt），the electromagnetic brake may not provide sufficient holding force．Install a stopping device to ensure safety on the machine side．
（2）For parameter setting and programming

CAUTION

Set parameter values which meet the controller，servo amplifier，servo motor and regenerative brake resistor types and system applications．Wrong setting can disable the protective functions．
Set the regenerative brake resistor type and capacity parameter values which match the operation mode，servo amplifiers and servo power supply module．Wrong setting can disable the protective functions．
Set the mechanical brake output and dynamic brake output used／unused parameter values which meet the system applications．Wrong setting can disable the protective functions．
．Set the stroke limit input used／unused parameter values which meet the system applications．Wrong setting can disable the protective functions．
〔．Set the servo motor encoder type（incremental，absolute position type，etc．）parameter values which meet the system applications．Wrong setting can disable the protective functions．
〔．Set the servo motor capacity and type（standard，low inertia，pancake，etc．）parameter values which meet the system applications．Wrong setting can disable the protective functions．
Set the servo amplifier capacity and type parameter values which meet the system applications．Wrong setting can disable the protective functions．
〔．The program instructions used in programs should be used under the conditions specified in this manual．

CAUTION

4. Make the sequence function program capacity, device capacity, latch use range, I/O assignment and error detection-time continued operation enable/disable settings which meet the system applications. Wrong setting can disable the protective functions.
Some devices used in programs are fixed in applications. Use them under the conditions specified in this manual.
5. If communication stops due to a communication error or the like, the input devices and data registers assigned to a link hold the data right before a communication stop. Always use the error remedying interlock programs specified in the instruction manuals of the products in use.
6. For programs written for the special function modules, always use the interlock programs specified in the instruction manuals of the special function modules.
(3) For transportation and installation

CAUTION

Transport the products in the correct method which meets their weights.
Use the hanger of the servo motor to only transport the servo motor. Do not use it to transport the servo motor which is being mounted to a machine.
. Do not stack the products over the limit.
. When transporting the controller or servo amplifier, do not hold its wires and cables connected.
4. When transporting the servo motor, do not hold its cables, shaft and detector.
4. When transporting the controller or servo amplifier, do not hold its front casing. It may drop.
4. When transporting, installing or removing the controller or servo amplifier, do not hold its edges.
〔. When installing the equipment, choose the place which will bear their weights and mount them in accordance with the A173UHCPU/A172SHCPUN/A171SHCPUN user's manual or the A273UHCPU user's manual and the instruction manuals of the products in use.
. Do not stand or rest heavy objects on the product.
\triangle Check that the mounting orientation is correct.
! Leave the specified clearances between the controller or servo amplifier and the control box inside surface, between the controller and the servo amplifier, and between the controller or servo amplifier and the other equipment.
! Do not install or operate the controller, servo amplifiers and servo motors if they are damaged or have parts missing.
4. Do not block the suction and exhaust ports of the servo motor provided with a cooling fan.
4. Prevent screws, metal fragments or other conductive bodies or oil or other flammable substance from entering the controller, servo amplifiers and servo motors.
4. The controller, servo amplifiers and servo motors are precision machines. Do not drop them or give them hard impact.

CAUTION

1. Securely fix the controller and servo amplifiers to the machinery in accordance with the A173UHCPU/A172SHCPUN/A171SHCPUN user's manual or the A273UHCPU user's manual and the instruction manuals of the products in use. Insecure fixing may lead to removal during operation.
〔. Always install the servo motor provided with reduction gear in the specified direction. Not doing so can cause oil leakage.
\} Store and use the equipment under the following environmental conditions.

Environment	Conditions	
	Control unit/servo amplifier	
Ambient temperature	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ (Non-freezing)	$0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ (Non-freezing)
Ambient humidity	As in the instruction manual of the corresponding product	$80 \% \mathrm{RH}$ or less (Non-condensing)
Storage temperature	As in the instruction manual of the corresponding product	$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Atmosphere	Indoors (no direct sunlight)	
Free from corrosive gas, flammable gas, oil mist, dust and dirt		

4. When coupling, do not give impact to the shaft end of the synchronous encoder or servo motor, e.g. do not hit it with a hammer. Doing so can cause a detector failure.
5. Do not give the servo motor shaft with loading of greater than the permissible. Such loading can cause the shaft to be broken.
6. When the equipment will not be used for an extended period of time, remove the power supply wires from the controller and servo amplifiers.
7. Store the controller and servo amplifiers in antistatic vinyl bags.
8. If they have been stored for an extended period of time, consult the service center or service station.
(4) For wiring

\ CAUTION	
	Wire the equipment correctly and securely. After wiring, recheck for wrong connections, insufficient terminal screw tightening, etc. Improper wiring can cause the servo motors to run away.
	After wiring, reinstall the protective covers such as terminal covers.
	On the output side of the servo amplifier, do not fit a power capacitor, surge suppressor and radio noise filter (FR-BIF option).
	Make correct connections on the output side (terminals U, V, W). Otherwise, the servo motors will run abnormally.
	Do not connect a commercial power supply to the servo motors directly. Doing so can cause a failure.

CAUTION

4. Mount the surge suppressing diode to the DC relay designed for control output signal, such as a brake signal, in correct orientation. If it is mounted in incorrect orientation, the signal may not be output due to a failure, disabling the protective circuit.
\lfloor While power is on, do not connect or disconnect the module-to-module connection cables, encoder cables
 and PLC extension cables.
5. Securely tighten the cable connector fixing screws and fixing mechanisms. Insecure fixing can cause removal during operation.
6. Do not bundle the power supply wires and cables.
(5) For test operation and adjustment

CAUTION

. Before starting operation, confirm and adjust the programs and parameters. A failure to do so may cause some machines to make unexpected motions.
\ Never make extreme adjustment changes as they will make operations instable.
4. Always zero the axes when using the absolute position system function, after making a new startup, or after changing the controller, absolute value-compatible motor or the like.

CAUTION

If any of the controller, servo amplifiers and servo motors has emitted smoke, unusual noise, unusual odor or the like, immediately switch power off.
4. After any program or parameter setting change or maintenance/inspection, always perform test operation before starting actual operation.
4. Any person who is involved in the disassembly or repair of this equipment should be fully competent to do the work.
\triangle Do not modify the equipment.
4. Install noise filters or shield the wiring, for example, to minimize the influence of electromagnetic interference. Electromagnetic interference may be given to the electronic equipment used near the controller and servo amplifiers.
. As for use with CE mark-compatible installations, refer to the "EMC Installation Guidelines" (data number $\operatorname{IB}(\mathrm{NA})-67320$) for motion controllers, and to the corresponding EMC guideline data for other equipment such as servo amplifiers and inverters.
. Use the equipment under the following operating conditions.

Item	Conditions
Input power	As in the specifications of the A173UHCPU/A172SHCPUN/A273UHCPU (32-axes feature)
Input frequency	As in the specifications of the A173UHCPU/A172SHCPUN/A273UHCPU (32-axes feature)
Permissible instantaneous power failure time	As in the specifications of the A173UHCPU/A172SHCPUN/A273UHCPU (32-axes feature)

(7) For corrective actions for alarms

CAUTION

1. If a self-diagnostic error of the controller or servo amplifier has occurred, confirm the check items and recover in accordance with this manual and the instruction manuals of the products in use, and recover from the error.
. If If it is assumed that a power failure or product failure may result in a hazardous status, use a servo motor provided with electromagnetic brake or provide an external brake mechanism for holding purpose to prevent such hazard.
. . The electromagnetic brake operation circuit should have a double circuit structure so that the electromagnetic brake will also be operated by an external emergency stop signal.
2. Restart operation after removing the cause of alarm occurrence and ensuring safety.
. When power is restored after an instantaneous power failure, stay away from the machine as it may restart suddenly. (Design the machine so that personal safety is secured if it restarts.)
(8) For maintenance, inspection and parts replacement

CAUTION

Perform daily inspection and periodic inspection in accordance with the instruction manuals.
Start maintenance/inspection after backing up the programs and parameters of the controller and servo amplifiers.
\$. When opening or closing the doors and covers, do not put your hands and fingers into their gaps.
〔. Change consumables such as batteries periodically in accordance with the A173UHCPU/A172SHCPUN/A171SHCPUN user's manual or the A273UHCPU user's manual and the instruction manuals of the products in use.
4. Do not touch the IC leads and contactor contacts.
4. Do not place the controller and servo amplifiers on metal which may leak electricity or on wood, plastic, vinyl or the like charged with static electricity.
4. Do not test the equipment with a megger (measure insulation resistance) during inspection.
4. After changing the controller or servo amplifier, make correct settings of the new unit.
4. After changing the controller or absolute position-compatible motor, zero the axes in either of the following methods. Not doing so will cause position shifts.
(1) After writing the servo data to the PLC using the peripheral software, switch power off, then on again and perform zeroing operation.
(2) Using the backup function of the peripheral software, load the before-replacement backup data.
4. At the end of maintenance/inspection, check whether the absolute position detecting function detects positions properly.
Do not short, recharge, overheat, burn or disassemble the batteries.
Since the electromagnetic capacitors emit gas if they fail, keep your face away from the controller and servo amplifiers.
4
The electromagnetic capacitors and fans will deteriorate. Change them periodically to prevent secondary damage. Consult the system service or service station for replacement.
(9) Disposal

CAUTION

Dispose of this product as general industrial waste.
Do not disassemble the controller, servo amplifier and servo motor parts.
Dispose of the batteries in the method prescribed in the corresponding municipality.

(10) General instruction

All illustrations given in this manual may have been drawn with covers or safety guards removed to provide in-depth description. Before starting operation of the product, always return the covers and guards into original positions as specified and operate the equipment in accordance with this manual.

Revisions
The manual number is given on the bottom left of the back cover.

Print Date	Manual Number	
Dec., 2000	IB(NA)-0300022-A	First edition

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

CONTENTS

1. OVERVIEW 1-1
1.1 Features 1-1
2. SYSTEM CONFIGURATION 2-1 to 2-5
2.1 A273UHCPU-S3 System Overall Configuration 2-1
2.2 A173UHCPU(-S1) System Overall Configuration 2-3
2.3 A172SHCPUN System Overall Configuration 2- 4
2.4 Software Package List 2-5
3. PERFORMANCE SPECIFICATIONS 3-1 to 3-7
3.1 SFC Performance Specifications 3-1
3.2 SCPU Performance Specifications 3-2
3.3 PCPU Performance Specifications 3-3
3.3.1 Motion control specifications 3-3
3.3.2 Operation control/transition control specifications 3-4
4. SFC PROGRAMS 4-1 to 4-27
4.1 SFC Program Structure 4-1
4.2 SFC Chart Symbol List 4- 2
4.3 Branch and Coupling Chart List 4-5
4.4 SFC Program Names 4-9
4.5 Steps 4-10
4.5.1 Motion control step 4-10
4.5.2 Operation control step 4-11
4.5.3 Subroutine call/start step 4-12
4.5.4 Clear step 4-13
4.6 Transitions 4-15
4.7 Jump, Pointer 4-17
4.8 END 4-17
4.9 Branches, Couplings 4-18
4.9.1 Series transition 4-18
4.9.2 Selective branch, selective coupling. 4-19
4.9.3 Parallel branch, parallel coupling 4-20
4.10 Y/N Transitions 4-22
4.11 SFC Comments 4-26
5. OPERATION CONTROL PROGRAMS 5-1 to 5-76
5.1 Operation Control Programs 5-1
5.2 Device Descriptions 5-5
5.3 Constant Descriptions 5-7
5.4 Binary Operations 5-8
5.4.1 Substitution := 5-8
5.4.2 Addition : + 5-10
5.4.3 Subtraction 5-11
5.4.4 Multiplication : * 5-12
5.4.5 Division :/ 5-13
5.4.6 Remainder:\% 5-14
5.5 Bit Operations 5-15
5.5.1 Bit inversion (complement) 5-15
5.5.2 Bit logical AND : \& 5-16
5.5.3 Bit logical OR:| 5-17
5.5.4 Bit exclusive OR :^. 5-18
5.5.5 Bit right shift : >> 5-19
5.5.6 Bit left shift : <<. 5-20
5.5.7 Sign inversion (complement of 2) 5-21
5.6 Standard Functions 5-22
5.6.1 Sine : SIN 5-22
5.6.2 Cosine: COS 5-23
5.6.3 Tangent: TAN 5-24
5.6.4 Arcsine : ASIN 5-25
5.6.5 Arccosine : ACOS 5-26
5.6.6 Arctangent: ATAN 5-27
5.6.7 Square root : SQRT 5-28
5.6.8 Natural logarithm : LN 5-29
5.6.9 Exponential operation : EXP 5-30
5.6.10 Absolute value : ABS 5-31
5.6.11 Round-off : RND 5-32
5.6.12 Round-down : FIX 5-33
5.6.13 Round-up : FUP. 5-34
5.6.14 BCD \rightarrow BIN conversion : BIN 5-35
5.6.15 BIN \rightarrow BCD conversion: BCD 5-36
5.7 Type Conversions 5-37
5.7.1 Signed 16 -bit integral value conversion : SHORT 5-37
5.7.2 Unsigned 16 -bit integral value conversion : USHORT 5-38
5.7.3 Signed 32 -bit integral value conversion : LONG 5-39
5.7.4 Unsigned 32-bit integral value conversion : ULONG 5-40
5.7.5 Signed 64-bit floating-point value conversion : FLOAT 5-41
5.7.6 Unsigned 64-bit floating-point value conversion : UFLOAT 5-42
5.8 Bit Device Statuses 5-43
5.8.1 ON (normally open contact) : (None) 5-43
5.8.2 OFF (normally closed contact) : ! 5-44
5.9 Bit Device Controls 5-45
5.9.1 Device set: SET= 5-45
5.9.2 Device reset : RST= 5-47
5.9.3 Device output : DOUT 5-49
5.9.4 Device input : DIN 5-50
5.10 Logical Operations 5-51
5.10.1 Logical acknowledgement : (None) 5-51
5.10.2 Logical negation :! 5-52
5.10.3 Logical AND : * 5-53
5.10.4 Logical OR :+ 5-54
5.11 Comparison Operations 5-55
5.11.1 Equal to : == 5-55
5.11.2 Not equal to : != 5-56
5.11.3 Less than : 5-57
5.11.4 Less than or equal to: <= 5-58
5.11.5 More than : > 5-59
5.11.6 More than or equal to: >= 5-60
5.12 Motion-Dedicated Functions (CHGV, CHGT) 5-61
5.12.1 Speed change request : CHGV 5-61
5.12.2 Torque limit value change request : CHGT 5-66
5.13 Other Instructions 5-68
5.13.1 Event task enable : El. 5-68
5.13.2 Event task disable : DI 5-69
5.13.3 No operation : NOP 5-70
5.13.4 Block move : BMOV 5-71
5.13.5 Time to wait : TIME. 5-74
5.14 Comment Statement :// 5-76
6. TRANSITION PROGRAMS 6-1 to 6-2
6.1 Transition Programs 6-1
7. MOTION CONTROL PROGRAMS 7-1 to 7-12
7.1 Servo Instruction List 7-1
7.2 Servo Motor/Virtual Servo Motor Shaft Current Value Change 7-5
7.3 Synchronous Encoder Shaft Current Value Change Control (SV22 Only) 7-8
7.4 Cam Shaft Within-One-Revolution Current Value Change Control (SV22 Only) 7-11
8. MOTION DEVICES 8-1 to 8-5
8.1 Motion Registers (\#0 to \#8191) 8-1
8.2 Coasting Timer (FT) 8-4
9. TASK OPERATIONS 9-1 to 9-3
9.1 Task Definitions 9-1
9.2 Task Execution Status 9-3
10. PROGRAMMING INSTRUCTIONS 10-1 to 10-2
10.1 Task Definitions 10-1
10.2 SET/RST Response Delays of Motion-Dedicated Bit Devices. 10-1
10.3 Cancel Start. 10-2
10.4 Indirect Designation using Motion Devices 10-2
10.5 Sequence Programs 10-2
11. SFC PARAMETERS 11-1 to 11-8
11.1 Task Parameters 11-1
11.2 Program Parameters 11-3
12. HOW TO RUN SFC PROGRAM 12- 1 to 12- 6
12.1 How to Start SFC Program 12-1
12.1.1 Automatic start 12-1
12.1.2 Start from SFC program 12-1
12.1.3 Start from PLC (Sequence instruction SFCS 12- 2
12.2 How to End SFC Program 12-4
12.3 Clear Step in the SFC Program 12-4
12.4 How to Change from One SFC Program to Another 12-4
12.5 How to Manage the Running Programs 12-4
12.6 SCPU to PCPU Interrupt Instruction (Sequence instruction ITP) 12-5
13. SFC PROGRAM CONTROLLING OPERATIONS 13-1 to 13-3
13.1 Operation Performed at CPU Power-Off or Key-Reset 13-1
13.2 Operation Performed when CPU Is Put in RUN Mode. 13-1
13.3 Operation Performed when CPU Is Switched from RUN to STOP 13-1
13.4 Operation Performed when CPU is set to PAUSE or STEP-RUN 13-1
13.5 Operation Performed when PLC Ready (M2000) Turns OFF/ON 13- 2
13.6 Error-Time Operation 13-3
14. USER FILES 14-1 to 14-2
14.1 Projects 14-1
14.2 User File List 14- 2
15. ERROR LISTS 15-1 to 15-8
15.1 SFC Program Errors 15-1
15.2 SFC Parameter Errors 15-8
16. LIMIT SWITCH OUTPUT FUNCTION 16-1 to 16-8
16.1 Operations 16-1
16.2 Limit Output Setting Data 16-4
APPENDICES APP- 1 to APP- 8
APPENDIX 1 PROCESSING TIMES APP- 1
Appendix 1.1 Operation Control/Transition Instruction Processing Times APP- 1
Appendix 1.2 Motion Operation Cycles (msec) APP- 8

1. OVERVIEW

This is a programming manual for the motion SFC-compatible CPU operating system software packages "SW3RN-SV13 \square ", "SW3RN-SV22 \square " designed to run SFC programs on the motion CPU side.
Conventionally, a sequence of machine operations were controlled by the PLC CPU, and motion program start and stop control was exercised by the motion CPU under the start and stop commands of the PLC. Hence, a delay or variation of one PLC scan occurred at the worst between when a command condition enabled until a command was issued, limiting the applications where fast response and short tact time are pursued.
The motion SFC-compatible CPU operating system allows motion side programs to be written in SFC (Sequential Function Chart), which conforms to IEC1131-3, to control a sequence of machine operations. In addition, it also enables event control which runs a program at an interrupt input from an external sensor. Mainly performing the processings irrelevant to sequential control, the PLC controls ladder programs by constant scan execution.

1.1 Features

(1) Since the motion CPU judges whether a transition condition enabled or not to make a start, there are no response delays or variations affected by PLC scan time.
(2) The SFC step processing system (only active steps are executed) ensures rapid processing and fast response.
(3) The motion CPU can perform not only a motion program start but also numerical operations, device SET/RST, etc., making operations via the PLC unnecessary and improving tact time.
(4) The motion-specific transition condition description allows a command to be given to the servo amplifier immediately after a start condition enables.
(5) The motion-specific transition condition description allows a transition to the next step to be made after a start, without waiting for positioning completion.
(6) You can set programs (written in SFC) which run in fast response to external interrupt inputs (NMI).
(7) You can set programs (written in SFC) which run in a short cycle (1.777 ms , $3.555 \mathrm{~ms}, 7.111 \mathrm{~ms}, 14.222 \mathrm{~ms}$).
(8) As a sequence of machine operations can be written in correspondence with operation steps, the resultant program is easy for anyone to understand, improving maintainability.

2. SYSTEM CONFIGURATION

2.1 A273UHCPU-S3 System Overall Configuration

The following system configuration assumes use of the A273UHCPU-S3.

POINT

(1) I/O assignment

- When no I/O assignment is made, the I/O numbers of the PLC extension base 1 start from X/Y80.
- When you want to use the PLC extension base 1 at the I/O numbers of $\mathrm{X} / \mathrm{Y} 0$ and later, make I/O assignment by setting slots 0 to 7 as " 0 free points".
(2) The motion slots accept up to 256 I/O points.
(3) The I/O numbers of the I/O modules loaded in the motion slots should be later than the I/O numbers used with the PLC slots.
(4) The motion slots accept one Al61 interrupt input module. This module is designed for only event/NMI input to the motion CPU and is irrelevant to PLC interrupt programs.

2.2 A173UHCPU(-S1) System Overall Configuration

The following system configuration assumes use of the A173UHCPU(-S1).

POINT

(1) Use the A168B when using the bus-connection type GOT.
(2) Using the A31TU-E teaching unit provided with deadman switch requires the exclusively used A31TUCBL03M connection cable between the CPU module and A31TU-E connector. The A31TU-E will not operate at all if it is connected directly with the RS422 connector of the CPU, without using the exclusively used cable.
Also, after disconnecting the A31TU-E, fit the A31SHORTCON shortcircuit connector designed for A31TUCBL.
(3) The motion slots also accept PLC A1S I/O modules.
(4) The motion slots accept one A1SI61 interrupt input module.

This module is designed for only event/NMI input to the motion CPU and is irrelevant to PLC interrupt programs.
(5) The motion slots accept up to 256 I/O points.
(6) The I/O numbers of the I/O modules loaded in the motion slots should be later than the I/O numbers used with the PLC slots.

2.3 A172SHCPUN System Overall Configuration

The following system configuration assumes use of the A172SHCPUN.

POINT

(1) Use the A168B when setting one or more PLC extension bases.
(2) The motion slots also accept PLC A1S I/O modules.

The motion slots accept up to 256 I/O points.
(Actually, the maximum points is 64 -point modules * $2=128$ points.)
(3) The I/O numbers of the I/O modules loaded in the motion slots should be later than the I/O numbers used with the PLC slots.
(4) The motion slots accept one A1SI61 interrupt input module.

This module is designed for only event/NMI input to the motion CPU and is irrelevant to PLC interrupt programs.

2.4 Software Package List

Application	Peripheral Device	Programming Software Package Type	Operating	stem Software P	age Type	Remarks
			For A172SHCPUN	$\begin{array}{\|c\|} \hline \text { For } \\ \text { A173UHCPU(-S1) } \end{array}$	For A273UHCPU-S3	
			(8-axes feature)	(32-axes feature)	(32-axes feature)	
For conveyor/ Assembly	IBM PC/AT	SW3RNC-GSVE	SW3RN-SV13D	SW3RN-SV13B	SW3RN-SV13X	With teaching function
For automatic machinery	IBM PC/AT		SW3RN-SV22C	SW3RN-SV22A	SW3RN-SV22W	Without teaching function

(1) Type definition
$\begin{aligned} & \text { (Operating System) } \quad \text { S W } 3 \\ & \longrightarrow R N-S V 13 X \\ & \text { Indicates motion SFC compatibility. }\end{aligned}$
(Programming software) S W $3 \underset{\sim}{R} \underset{\sim}{N}$ _- G S V 13 P

\rightarrow OS environment: Windows NT/98
\rightarrow Device: IBM PC/AT 100\% compatible
\rightarrow Indicates conventional OS or motion SFC compatibility.
(2) OS type/version display

On the installation screen of the peripheral, the OS type/version of the connected CPU is displayed as shown below. When the A273UHCPU-S3 is used, this data is also indicated by the CPU front LEDs by performing an indicator reset.

3. PERFORMANCE SPECIFICATIONS

3. PERFORMANCE SPECIFICATIONS

3.1 SFC Performance Specifications

Table 3.1 SFC Performance Specification List

3. PERFORMANCE SPECIFICATIONS

3.2 SCPU Performance Specifications

Table 3.2 SCPU Performance Specification List

(Note-1) : The positioning-dedicated device range varies with the OS.
(Note-2) : Extended comments are not stored into the internal memory of the CPU.

3.3 PCPU Performance Specifications

3.3.1 Motion control specifications

Table 3.3 PCPU Performance Specification List (Motion Control Specifications)

3.3.2 Operation control/transition control specifications

Table 3.4 PCPU Performance Specification List (Operation Control/Transition Control Specifications)

Table 3.4 PCPU Performance Specification List (Operation Control/Transition Control Specifications) (Continued)

(1) Operation control/transition instruction list

Classification	Symbol	Function	Format		Usable Programs		Usable Expressions			
					F/FS	G				
Binary operation	=	Substitution	(D)=(S)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	+	Addition	(S1)+(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	-	Subtraction	(S1)-(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	*	Multiplication	(S1)*(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	1	Division	(S1)/(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	\%	Remainder	(S1)\%(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
Bit operation	~	Bit inversion (complement)	$\sim^{\sim}(\mathrm{S})$	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	\&	Bit logical AND	(S1)\&(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	\|	Bit logical OR	(S1)\|(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	\wedge	Bit exclusive OR	$(\mathrm{S} 1)^{\wedge}(\mathrm{S} 2)$	4	0	0	0	-	-	-
	>>	Bit right shift	(S1) \gg (S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
	<<	Bit left shift	(S1)<<(S2)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
Sign	-	Sign inversion (complement of 2)	-(S)	4	\bigcirc	\bigcirc	\bigcirc	-	-	-
Standard function	SIN	Sine	SIN(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	COS	Cosine	$\cos (\mathrm{S})$	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	TAN	Tangent	TAN(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	ASIN	Arcsine	ASIN(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	ACOS	Arccosine	ACOS(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	ATAN	Arctangent	ATAN(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	SQRT	Square root	SQRT(S)	2	O	\bigcirc	\bigcirc	-	-	-
	LN	Natural logarithm	LN(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	EXP	Exponential operation	EXP(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	ABS	Absolute value	ABS(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	RND	Round-off	RND(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	FIX	Round-down	FIX(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	FUP	Round-up	FUP(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	BIN	$\mathrm{BCD} \rightarrow \mathrm{BIN}$ conversion	BIN(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	BCD	$\mathrm{BIN} \rightarrow \mathrm{BCD}$ conversion	BCD(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
Type conversion	SHORT	Converted into 16-bit integer type (signed)	SHORT(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	USHORT	Converted into 16-bit integer type (unsigned)	USHORT(S)	2	0	O	\bigcirc	-	-	-
	LONG	Converted into 32-bit integer type (signed)	LONG(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	ULONG	Converted into 32-bit integer type (unsigned)	ULONG(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	FLOAT	Regarded as signed data and converted into 64-bit floatingpoint type	FLOAT(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
	UFLOAT	Regarded as unsigned data and converted into 64-bit floatingpoint type	UFLOAT(S)	2	\bigcirc	\bigcirc	\bigcirc	-	-	-
Bit device status	(None)	ON (normally open contact)	(Bit conditional expression)	2	\bigcirc	O	-	\bigcirc	-	\bigcirc
	!	OFF (normally closed contact)	!(Bit conditional expression)	2	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc

Classification	Symbol	Function	Format		Usable Programs		Usable Expressions			
					F/FS	G				
Bit device control	SET	Device set	SET(D)	3	\bigcirc	\bigcirc	-	\bigcirc	-	-
			SET(D)= (conditional expression)	4	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-
	RST	Device reset	RST(D)	3	\bigcirc	\bigcirc	-	\bigcirc	-	-
			RST(D)= (conditional expression)	4	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-
	DOUT	Device output	DOUT(D),(S)	4	\bigcirc	0	-	\bigcirc	-	-
	DIN	Device input	DIN(D),(S)	4	\bigcirc	\bigcirc	-	\bigcirc	-	-
Logical operation	(None)	Logical acknowledgement	(Conditional expression)	0	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
	!	Logical negation	!(conditional expression)	2	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
	*	Logical AND	(Conditional expression) * (conditional expression)	4	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
	+	Logical OR	(Conditional expression) + (conditional expression)	4	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
Comparison operation	==	Equal to	$\left.\begin{array}{ll} \text { (Calculation } & \text { expression) } \\ == & \text { (calculation } \\ \text { expression) } \end{array}\right)$	4	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
	!=	Not equal to	(Calculation expression) != (calculation expression)	4	\bigcirc	0	-	-	\bigcirc	\bigcirc
	<	Less than	(Calculation expression) < (calculation expression)	4	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
	<=	Less than or equal to	(Calculation expression) <= (calculation expression)	4	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
	>	More than	(Calculation expression) > (calculation expression)	4	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
	>=	More than or equal to	(Calculation $>=$ (calculation expression) expresion)	4	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc
Motion dedicated function	CHGV	Speed change request	CHGV((S1),(S2))	4	\bigcirc	\bigcirc	-	-	-	-
	CHGT	Torque limit value change request	CHGT((S1),(S2))	4	\bigcirc	\bigcirc	-	-	-	-
Others	EI	Event task enable	EI	1	0	0	-	-	-	-
	DI	Event task disable	DI	1	\bigcirc	\bigcirc	-	-	-	-
	NOP	No operation	NOP	1	\bigcirc	\bigcirc	-	-	-	-
	BMOV	Block move	BMOV(D),(S),(n)	7	\bigcirc	0	-	-	-	-
	TIME	Time to wait	TIME(S)	7	-	\bigcirc	-	-	-	-

(2) Rough calculation expression for operation control/transition program's singleprogram code size

```
2+(1+total number of basic steps in 1 block
    + number of 32-bit constants/1 block }\times
    + number of 64-bit constants/1 block }\times3)\times\mathrm{ number of blocks (steps)
```

 (1 step = 2 bytes)

4. SFC PROGRAMS

4.1 SFC Program Structure

As shown below, an SFC program consists of START, steps, transitions, END and others.

When started, the above SFC program performs the following operations.
(1) The step (F 0) is activated and the operation specified at the step (FO) is performed (preparations for positioning). A step in such an active state is called an active step.
(2) Whether the condition specified at the transition (GO) has enabled or not (whether the positioning program can be started or not) is checked. When the condition enables, the active step (FO) is deactivated and the next step (KO) is activated (servo program KO is started).
(3) At the transition (G1), whether the step (K0) has completed its operation (servo program K0 has completed positioning) is checked. When the operation is completed (condition enables), control transits to the next step.
(4) With the transition of an active step as described in above (1) to (3), control is exercised and ends at END.

Refer to Chapter 9 Task Operations for details of the run timing of the SFC program such as above.

POINT

The number of steps which can be active steps simultaneously is up to 256, with those of all SFC programs combined. Excess of 256 will result in an SFC program error 16120.

4.2 SFC Chart Symbol List

Parts acting as SFC program components are shown below. In an SFC program, these parts are connected by directed lines to represent an operation sequence and transition control.

Classification	Name	Symbol (Code size (byte))	List Representation	Function
Program start/end	START	(0)	Program name	- Indicates a program entry with a program name. - Specify this program name for a subroutine call. - Only one program name may be used with one program.
	END		END	- Indicates a program end (exit). - When a subroutine called is made, execution returns to the call source program. - Multiple or no symbols may be set within one program.
Step	Motion control step	1 Kn	CALL Kn	- Starts a servo program Kn (K0 to K4095).
	Once execution operation control step		CALL Fn	- Runs an operation control program Fn (FO to F4095) once.
	Scan execution type operation control step		CALL FSn	- Repeats an operation control program FSn (FS0 to FS4095) until the next transition condition enables.
	Subroutine call/start step	(8)	GSUB program name	- GSUB followed by WAIT performs a "subroutine call" and shifts control to the specified program. When END is executed, control returns to the call source program. - GSUB followed by other than WAIT performs a "subroutine start", starts the specified program, and shifts execution to the next (lower part). The start source and destination programs are run at the same time, and when END is executed, the call destination program ends.
	Clear step		CLR program name	- Stops and ends the specified program being run. After an end, restarting the program starts it from the initial (start step). - When the specified program is being "subroutine called", the subroutine program being run is also stopped. - After the specified program has been "subroutine started", the subroutine program being run is not stopped. - When clear is performed on the "subroutine called" subroutine, the specified subroutine being run is stopped, and execution returns to the call source program and shifts to the next.

Classification	Name	Symbol (Code size (byte))	List Representation	Function
Transition	Shift (Pre-read transition)		SFT Gn	- When this transition is preceded by a motion control step, execution does not wait for completion of the motion operation, and shifts to the next step when the transition condition Gn (G0 to G4095) enables. - When this transition is preceded by an operation control step, execution shifts to the next step when the transition condition enables after operation has been performed. - When this transition is preceded by a subroutine call/start step, execution does not wait for completion of the subroutine operation, and shifts to the next step when the transition condition enables.
	WAIT	(8)	WAIT Gn	- When this transition is preceded by a motion control step, execution waits for completion of the motion operation and shifts to the next step when the transition condition Gn (G0 to G4095) enables. - When this transition is preceded by an operation control step, execution shifts to the next step when the transition condition enables after operation has been performed (same operation is performed as in Shift). - When this transition is preceded by a subroutine call/start step, execution waits for completion of the subroutine operation and shifts to the next step when the transition condition enables.
	WAITON	 (14)	WAITON bit device	- Prepares for starting the next motion control step, and when the specified bit device turns ON, issues a command immediately. - Always pair this transition with a motion control step one-for-one.
	WAITOFF	 (14)	WAITOFF bit device	- Prepares for starting the next motion control step, and when the specified bit device turns OFF, issues a command immediately. - Always pair this transition with a motion control step one-for-one.
	Shift Y/N		IFBm IFT1 SFT Gn $:$ JMP IFEm IFT2 SFT Gn+? \vdots JMP IFEm IFEm	- When this transition is preceded by a motion control step, execution does not wait for completion of the motion operation, and shifts to the lower step when the transition condition Gn (G0 to G4095) enables, or shifts to the rightconnected step when the condition does not enable. - When this transition is preceded by an operation control step, execution shifts to the low step when the transition condition enables after operation has been performed, or shifts to the right-connected step when the condition does not enable. - When this transition is preceded by a subroutine call/start step, execution does not wait for completion of the subroutine operation, and shifts to the lower step when the transition condition enables, or shifts to the rightconnected step when the condition does not enable.

Classification	Name	$\begin{gathered} \text { Symbol } \\ \text { (Code size (byte)) } \end{gathered}$	List Representation	Function
Transition	WAIT Y/N		IFBm IFT1 WAIT Gn $:$ JMP IFEm IFT2 SFT Gn+? $:$ JMP IFEm IFEm	- When this transition is preceded by a motion control step, execution waits for completion of the motion operation, and shifts to the lower step when the transition condition Gn (G0 to G4095) enables, or shifts to the right-connected step when the condition does not enable. - When this transition is preceded by an operation control step, execution shifts to the low step when the transition condition enables after operation has been performed, or shifts to the right-connected step when the condition does not enable (same operation as in Shift). - When this transition is preceded by a subroutine call/start step, execution waits for completion of the subroutine operation, and shifts to the lower step when the transition condition enables, or shifts to the right-connected step when the condition does not enable.
Jump	Jump	(14)	JMP Pn	- Jumps to the specified pointer Pn (PO to P16383) within its own program.
Pointer	Pointer	$4 \mathrm{Pn}$ (8)		- Indicates a jump destination pointer (label). - This pointer can be set at a step, transition, branch point or coupling point. - P0 to P16383 can be set in a single program. The same numbers may also be used in other programs.

4.3 Branch and Coupling Chart List

The following are branch and coupling patterns which specify step and transition sequences in SFC charts.

	Name (Code size (byte))	SFC	ymbol	List Representation	Function
	Series transition (Corresponding symbol size)			List representation corresponding to SFC chart symbols shown in 4.2.	- Steps and transitions connected in series are processed in order from top to bottom. - Steps and transitions need not be lined up alternately. - When a transition is omitted, unconditional shift transition processing is performed.
	Selective branch ((Number of branches + 2) $\times 10$)		\square IFT2 \square	CALL Kn IFBm IFT1 SFT Gn CALL Fn : JMP IFEm	- After the step or transition preceding a branch is executed, the route whose transition condition enables first is executed. - Selective branch destinations should always be started by transitions, all of which must be Shift or WAIT. (Using Shift and WAIT together will cause a parallel branch.)
	Selective coupling			$\begin{array}{\|l\|l} \text { IFT2 } & \\ & \text { SFT Gn' } \\ \text { CALL Fn' } \\ & \\ & \\ \text { (JMP IFEm) } \\ \text { IFEm } \\ & \\ \text { CALL Fn" } \end{array}$	- After the route branched by a selective branch has been processed, execution shifts to a coupling point. - A coupling may be preceded and followed by either a step or a transition.
	Parallel branch (Number of branches $\times 22$ + number of coupling points $\times 2+12)$		\square PAT2 \square	SFT Gn PABm PAT1 CALL Fn SET Gn'	- Multiple routes (steps) connected in parallel are executed simultaneously. - Each parallel branch destination may be started by either a step or transition.
	Parallel coupling			JMP PAEm PAT2 CALL Fn' SET Gn"' $:$ (JMP PAEm) PAEm CALL Fn"' $:$	- Execution waits at the coupling point for executions of the routes branched by a parallel branch to be completed, and shifts to the next when executions of all routes are completed. A coupling may be preceded and followed by either a step or a transition. - When this coupling is preceded by an FS step, scans are executed during waiting. After waiting is complete, scans are not executed.
	Jump transition (Corresponding symbol size)	<Normal jump>	<Coupling jump>	CALL Fn JMP Pn	1) Normal jump - After the step or transition preceding this jump transition is executed, execution shifts to the pointer Pn specified within its own program. - The jump destination may either be a step or transition. - When a jump takes place from an FS step to a transition, scans are executed during waiting for the transition condition of the jump destination to enable. 2) Coupling jump - When a jump to the other route within a parallel branch takes place after the parallel branch, a "coupling jump" takes place and execution waits at the jump destination.
				$\begin{array}{\|ll} & \text { CALL Fn' } \\ \text { Pn } & \\ & \text { JMP Pn } \end{array}$	

Combining the basic type branches/couplings provides the following application types, which are defined as in the basic types.

	Name	SFC Symbol	List Representation	Function
Application type			CALL Kn IFBm IFT1 SFT Gn PABm PAT1 CALL Fn JMP PAEm PAT2	- After a selective branch, a parallel branch can be performed.
	Parallel coupling \| Selective coupling		CALL Fn' (JMP IFEm) PAEm JMP IFEm IFT2 SET Gn' CALL Fn" (JMP IFEm) IFEm SET Gn"	- The selective coupling point can be the same as the coupling point of a parallel coupling for selective branch \rightarrow parallel branch. Note that in an SFC chart, this type is displayed in order of a parallel coupling \rightarrow a selective coupling, as shown on the left. - In this case, you cannot set a pointer (Pn) between the parallel coupling point (PAEm) and the selective coupling point (IFEm).
	Parallel branch \| Selective branch		SFT Gn PABm PAT1 CALL Fn IFBm IFT1 SET Gn' CALL Fn' JMP IFEm IFT2 SFT Gn" CALL Fn"	- After a parallel branch, a selective branch can be performed.
	Selective coupling \| Parallel coupling		(JMP IFEm) IFEm JMP PAEm PAT2 CALL Fn"' CALL Kn (JMP PAEm) PAEm SET Gn'"	- The parallel coupling point can be the same as the coupling point of a selective coupling for parallel branch \rightarrow selective branch. Note that in an SFC chart, this type is displayed in order of a selective coupling \rightarrow a parallel coupling, as shown on the left. - In this case, you cannot set a pointer (Pn) between the selective coupling point (IFEm) and the parallel coupling point (PAEm).

	Name	SFC Symbol	List Representation	Function
Application type	Selective branch \| Selective branch			- After a selective branch, a selective branch can be performed.
	Selective coupling \| Selective coupling		(JMP IFEm+1) IFEm+1 JMP IFEm IFT2 SFT Gn"' CALL Fn' (JMP IFEm) IFEm SET Gn'",	- The two selective coupling points for selective branch \rightarrow selective branch can be the same. Note that in an SFC chart, this type is displayed in order of a selective coupling \rightarrow a selective coupling, as shown on the left. - In this case, you cannot set a pointer (Pn) between the selective coupling point (IFEm+1) and the selective coupling point (IFEm).
	Parallel branch Parallel branch		SFT Gn PABm PAT1 CALL Fn PABm +1 PAT1 CALL Fn' JMP PAEm+1 PAT2 CALL Fn"	- After a parallel branch, a parallel branch can be performed. - A parallel branch can be nested up to four levels.
	Parallel coupling \| Parallel coupling		(JMP PAEm+1) PAEm+1 JMP PAEm PAT2 CALL Fn", CALL Kn JMP PAEm PAEm SET Gn'"	- The two parallel coupling points for parallel branch \rightarrow parallel branch can be the same. Note that in an SFC chart, this type is displayed in order of a parallel coupling \rightarrow a parallel coupling, as shown on the left. - In this case, you cannot set a pointer (Pn) between the parallel coupling point (PAEm +1) and the parallel coupling point (PAEm).

	Name	SFC Symbol	List Representation	Function
	Selective coupling । Parallel branch		(JMP IFEm) IFEm PABm PAT1 CALL Fn JMP PAEm PAT2 CALL Fn' (JMP PAEm) PAEm	- The selective coupling point and parallel branch point can be the same. Note that in an SFC chart, this type is displayed in order of a selective coupling \rightarrow a parallel branch, as shown on the left. - In this case, you cannot set a pointer (Pn) between the selective coupling point (IFEm) and the parallel branch point (PABm).
Application type	Parallel coupling \| Selective branch			- The parallel coupling point and selective branch point can be the same. Note that in an SFC chart, this type is displayed in order of a parallel coupling \rightarrow a selective branch, as shown on the left. - Execution waits at the parallel coupling point and shifts to the selective branch. - In this case, you cannot set a pointer (Pn) between the parallel coupling point (PAEm) and the selective branch point (IFBm).
	Selective coupling \| Selective branch			- The selective coupling point and selective branch point can be the same. Note that in an SFC chart, this type is displayed in order of a selective coupling \rightarrow a selective branch, as shown on the left. - In this case, you cannot set a pointer (Pn) between the selective coupling point (IFEm) and the selective branch point (IFBm+1).
			(JMP PAEm) PAEm PABm+1 PAT1 CALL Fn $:$ JMP PAEm+1 PAT2 CALL Fn' $:$ (JMP PAEm+1) PAEm +1 $:$	- The parallel coupling point and parallel branch point can be the same. Note that in an SFC chart, this type is displayed in order of a parallel coupling \rightarrow a parallel branch, as shown on the left. - Execution waits at the parallel coupling point and shifts to the parallel branch. - In this case, you cannot set a pointer (Pn) between the parallel coupling point (PAEm) and the parallel branch point (PABm+1).

4.4 SFC Program Names

Set "SFC program names" to SFC program No. 0 to No. 255 individually. (Make this setting in the "SFC program management window" on the SFC program edit screen.)
Set an SFC program name within 16 characters. Specify this SFC program name for a "subroutine call/start step (GSUB)" and "clear step (CLR)".
SFC programs correspond to No. 0 to No. 255 and saved in a one program-for-one file format. The preset "SFC program name" is used as the file name of the SFC program file for user file management. (Refer to Chapter 14 for full information.)

POINT
(1) You can set an SFC program to any of No. 0 to No. 255. There are no specific programs which have special roles.
(2) You cannot use "\$" in the first character of an SFC program name.
(3) You cannot use " X:; , . * ? " < > |" in SFC program names.

4.5 Steps

4.5.1 Motion control step

Name	Symbol	Function
Motion control step	Kn	Starts a servo program Kn. Specifying range: K0 to K4095

[Operations]

(1) The start acceptance flag of the axis specified in the specified servo program Kn ($\mathrm{n}=0$ to 4095) turns ON.
(2) The specified servo program $\mathrm{Kn}(\mathrm{n}=0$ to 4095$)$ starts.

Execution timing

[Errors]
(1) The absence of the specified servo program Kn will result in an SFC program error 16200 and stop the SFC program running at the point of error detection.
[Instructions]
(1) To make a current value change in the SFC program, specify the CHGA instruction in the servo program and call it at the motion control step.
(2) If the servo program has stopped due to a major/minor error which occurred at or during a start of the servo program specified at the motion control step, the SFC program continues running. To stop the SFC program at error detection, provide an error detection condition at the transition (transition condition).

4.5.2 Operation control step

Name	Symbol	Function
Operation control step	Fn/FSn	
Runs an operation control program Fn/FSn. Specifying range: F0 to F4095/FS0 to FS4095		

[Operations]
(1) Once execution type operation control step Fn

Fn runs the specified operation control program Fn ($\mathrm{n}=0$ to 4095) once.
(2) Scan execution type operation control step FSn

FSn repeats the specified operation control program FSn ($\mathrm{n}=0$ to 4095) until the next transition condition enables.
[Errors]
[Instructions]
(1) For operation expressions that may be described in operation control programs, refer to Chapter 5 Operation Control Programs.
(2) The SFC program continues running if an operation or similar error occurs during execution of the operation control program.

4.5.3 Subroutine call/start step

Name	Symbol	Function
Subroutine call/start step	Program name	

(1) Calls/starts the SFC program of the specified program name.
(2) Control varies with the type of the transition coupled next to the subroutine call/start step.
(a) For WAIT

A subroutine call is performed. When the subroutine call step is executed, control shifts to the specified program as shown below, and when END of the called program is executed, control returns to the call source program.
(b) For other than WAIT

A subroutine start is performed. When the subroutine start step is executed, control starts the specified program and then shifts to the next as shown below. Hence, the start source and destination SFC programs are run in parallel. The started program ends when END is executed.

For WAIT
(1) The absence of the specified SFC program at a subroutine call/start will result in an SFC program error 16005 and stop the call/start source SFC program running at the point of error detection.
(2) If the called/started SFC program is already starting at a subroutine call/start, an SFC program error 16006 will occur and the call/start source SFC program running is stopped at the point of error detection.
(3) Calling/starting its own program at a subroutine call/start will result in an SFC program error 16110 and stop the call/start source SFC program running at the point of error detection.
(4) When the subroutine to be called/started at a subroutine call/start in the SFC program 2 which was called/started from the SFC program 1 is the SFC program 1 (main program), an SFC program error 16111 will occur and the call/start source SFC program 2 running is stopped at the point of error detection.

[Instructions]

(1) There are no restrictions on the depth of subroutine call/start nesting.
(2) For a subroutine start, the start source SFC program continues processing if the start destination SFC program stops due to an error.
(3) For a subroutine call, the call source SFC program stops running as soon as the call destination SFC program stops due to an error.

4.5.4 Clear step

Name	Symbol	Function		
Clear step	CLR Program name			Stops the running SFC program of the specified program
:---				
name.				

[Operations]

(1) Stops the specified SFC program running.
(2) After stopped, the clear-specified SFC program will not start automatically if it has been set to start automatically.
(3) The specified program may be its own program.
(4) If the specified program is being subroutine called, the subroutine program called is also stopped. (See below)

(5) When the specified program has been subroutine started, the subroutine program started continues processing. (See below)

(6) When the servo program started from the specified program is starting, the servo program continues processing.
[Errors]
(1) The absence of the SFC program specified at the clear step will result in an SFC program error 16203.
[Instructions]
(1) When the SFC program specified at the clear step is not starting, an error does not occur specifically and this step is ignored.
(2) If the SFC program running is stopped by the clear step, the output is held.

4.6 Transitions

You can describe conditional and operation expressions at transitions. The operation expression described here is repeated until the transition condition enables, as at the scan execution type operation step.
For the conditional/operation expressions that can be described in transition conditions, refer to Chapter 6 Transition Programs.
(1) Combinations with motion control steps
(a) Motion control step + shift

[Operations]

- Does not wait for the servo program Kn started at the motion control step to complete its operation, and shifts to the next step when the transition condition Gn enables.
(b) Motion control step + WAIT
[Operations]
- Waits for the servo program Kn started at the motion control step to complete its operation, and shifts to the next step when the transition condition Gn enables.
- The operation completion condition of the servo program Kn is not needed in the transition condition Gn.
- An error stop of the started servo program Kn at/during a start is also regarded as an operation completion.
(c) WAITON/WAITOFF + motion control step
[Operations]
- Prepares for the start of the motion control step next to WAITON/WAITOFF, and makes a start immediately when the specified bit turns ON/OFF.
 When the motion control step is executed without being used with WAITON/WAITOFF, preparations for a start are made after the transition condition preceding the motion control step enables. This will cause a variation of delay/starting time between when the transition condition enables and when a start is made, but a combination with WAITON/WAITOFF can eliminate the variation of the above delay/starting time.
- Specifiable bit devices

	A172SHCPUN	A173UHCPU(-S1)/ A273UHCPU-S3
X	X0 to X7FF	X0 to X1FFF
Y	$\mathrm{Y0}$ to Y7FF	Y0 to Y1FFF
M	M 0 to M2047	M0 to M8191
Special M	M9000 to M9255	M9000 to M9255
L	L0 to L2047	L0 to L8191
B	B0 to B3FF	B0 to B1FFF
F	F0 to F255	F0 to F2047
TC (timer coil)	TC0 to TC255	TC0 to TC2047
TT (timer contact)	TT0 to TT255	TT0 to TT2047
CC (counter coil)	CC0 to CC255	CC0 to CC1023
CT (counter contact)	CT0 to CT255	CT0 to CT1023

[Instructions]

- Always pair a transition with a motion control step one-for-one. If the step following WAITON/WAITOFF is not a motion control step, an SFC program error 16102 will occur and the SFC program running will stop at the point of error detection.
- An error will not occur if the jump destination immediately after WAITON/WAITOFF is a motion control step. (Left below)
- A pointer may exist immediately after WAITON/WAITOFF. (Right below)

- If a servo program specified at a motion control step could not be started due to a major/minor error, an SFC program continues running and execution shifts to the next, independently of the WAITON/WAITOFF bit device status. To stop the SFC program at error detection, provide an error detection condition at the next transition (transition condition).
(2) Combination with operation control step
[Operations]

- At an operation control step, both Shift and WAIT perform the same operation, and after an operation control program Fn is run, execution shifts to the next step when the transition condition Gn enables.
(3) Combination with subroutine call/start step

Refer to the section of 4.5 (3) Subroutine call/start step.
4.7 Jump, Pointer

[Operations]

- Setting a jump will cause a jump to the pointer Pn specified in its own program.
- You can set pointers at steps, transitions, branch points and coupling points.
- You can set pointers Pn, P0 to P16383, in a single program.

[Instructions]

- You cannot make a jump setting which will exit from within parallel branch-parallel coupling. (Bad example 1 given below)
- You cannot make a jump setting from outside parallel branch-parallel coupling to within parallel branch-parallel coupling. (Bad example 2 given below)
- You cannot make a setting where a label and a jump will continue. (Bad example 3 given below)

Bad example 2

4.8 END

```
END
```


[Operations]

- Ends a program.
- Making a subroutine call will return to the call source SFC program.
[Instructions]
- END may be set a multiple number of times within a single program.
- END cannot be specified between a parallel branch and a parallel coupling.
- The output is held after the SFC program is ended by END.

4. SFC PROGRAMS

4.9 Branches, Couplings

4.9.1 Series transition

Shifts execution to the subsequent step or transition connected in series.
(1) To start a servo program or subroutine and shift execution to the next without waiting for operation completion
Set Shift at a transition.
In this case, the transition (shift) may be omitted.
When you omitted the transition, an unconditional shift transition is performed.

POINT
When a subroutine start is made, it own program and a subroutine program are processed in parallel.
(2) To start a servo program or subroutine and proceed to the next step on operation completion
Set WAIT at a transition.

POINT

(1) The above start acceptance flag of the axis started in the next servo program K2 is not included in interlocks.
To use it as an interlock, the user should set it in the transition condition G1.
(2) WAIT must be set to proceed to the next step on operation completion. However, when there are specifically no conditions to be set as interlocks, set "NOP (No Operation)" in the transition program (Gn).

4.9.2 Selective branch, selective coupling

(1) Selective branch

Executes only the route whose condition was judged to have enabled first among the conditions of multiple transitions connected in parallel.
Transitions must be all Shifts or WAITs.
(Example) For WAIT

K1
Starts servo program K1.

POINT

(1) Transition condition judgment is not always executed from left to right.
(2) Using Shift and WAIT together will cause a parallel branch.
(2) Selective coupling

Recoupling of routes into a single route after their processing completions following a selective branch will be a selective coupling. However, you can also make a setting where no coupling will be made as shown below.

4.9.3 Parallel branch, parallel coupling

(1) Parallel branch

Simultaneously executes multiple steps connected in parallel. A parallel branch destination may be started by either a step or a transition.

WAIT GO

POINT

"Shift" or "WAIT" can be set to a transition preceding a parallel branch. "WAITON" and "WAITOFF" cannot be set.
(2) Parallel coupling

A parallel branch must be coupled by a parallel coupling.
A jump setting to another branch route can be made within parallel branchparallel coupling.
In this case, a jump destination is a midway parallel coupling point (coupling jump).
You cannot set a jump to exit from within parallel branch-parallel coupling.

POINT

The number of parallel branches need not match that of couplings at a parallel coupling point.
(In the example of the diagram in Section 4.9.3 (2), the number of parallel branches is 3 and that of couplings is 2.)

When a WAIT transition is set right after a parallel coupling, the stop completions of the axes are not included in the waiting conditions if the parallel coupling is preceded by motion control steps. To perform a parallel coupling on stop completions, set WAIT transitions before a parallel coupling.
(×)

()

When you want to branch to routes when a transition condition enables and does not enable, "Shift Y/N transition" or "WAIT Y/N transition" will be useful.

Name	Symbol	Function
Shift Y/N transition		- When a transition condition set at Gn enables, execution shifts to the lower step. When that condition does not enable, execution shifts to the right-connected step. - Differences between "Shift Y/N" and "WAIT Y/N" are the same as those between "Shift" and "WAIT".
WAIT Y/N transition		

A Y / N transition is designed to describe the following two-route selective branch program easily.

(1) Automatic free G number search feature
(a) When not set to automatic numbering

Searches for a free number forward, starting with the "set G number + 1" at the "Shift Y/N" or "WAIT Y/N" symbol.
When no free numbers are found after a search up to 4095, a search is made from 0 to the "set G number - 1".
(b) When set to automatic numbering

Searches for a free number forward (or backward) in the automatic numbering range, starting with the "automatically numbered G number + 1 (or -1)" at the "Shift Y/N" or "WAIT Y/N" symbol. (The searching method is as in the automatic numbering setting.)
(2) Automatic logical NOT program generation feature

Automatically generates a program which logically negates the conditional expression block (last block) of the transition program set at "Shift Y/N" or "WAIT Y/N".
The basic is as described below.
<Set program (conditional expression block)>
Conditional expression//(bit conditional expression or comparison conditional expression)

<Logically negated, automatically generated program (conditional expression block)>
!Conditional expression//(bit conditional expression or comparison conditional expression)

Examples are given below.
<Set program (conditional expression block)>
(Example 1)

M0
(Example 2)
D0!=K100 device ON

<Logically negated, automatically generated program (conditional expression block)>
(Example 1)
!(M0) //Bit device OFF
(Example 2)
!(D0!=K100) //Data register D0 is K100

POINT

- For the instructions usable in the conditional expressions of "Shift Y / N " or "WAIT Y/N" transition programs, refer to "Section 3.3.2 (1) Operation control/transition instruction list".
(3) Instructions for SFC charts

Any SFC chart that will be meaningless to or conflict with the definition of Y / N transitions will result in an error at the time of editing (or SFC chart conversion). Their patterns and instructions will be given below.
(a) When "Shift Y/N" or "WAIT Y/N" is connected as a selective branch or parallel branch: Error

- "Shift Y/N" used as selective branch

- "Shift Y/N" and "WAIT Y/N" used as parallel branch

- "WAIT Y/N" used as selective branch

- "Shift (or WAIT) Y/N" used with other step/transition as parallel branch or selective branch

(b) When a coupling precedes "Shift Y/N" or "WAIT Y/N: Provide "couplingbranch continuation" in between.
- Direct coupling with "Shift Y/N" or "WAIT Y/N" is not allowed.

- "Provide "coupling-branch continuation" in between.

(c) The following patterns may be set.
- End (END) from "Shift Y/N" or "WAIT Y/N"

- Jump from "Shift Y/N" or "WAIT Y/N"

- Continuation from "Shift Y/N" or "WAIT Y/N" to "Shift Y/N" or "WAIT Y/N" (selective branch-selective branch)

- When there are two or more connection lines from Y/N side of "Shift Y/N" or "WAIT Y/N", selective branch \rightarrow selective branch or parallel branch continues.

4.11 SFC Comments

A comment can be set to each symbol of the step/transition in an SFC chart. Comments are shown in an SFC chart by changing the display mode to "Comment display" on the SFC program edit screen.
Since SFC comments are stored into the CPU code area, performing read from PLC displays the SFC chart with comments.

POINT

(1) SFC comments are stored into the CPU code area.

The CPU code area stores the SFC chart codes, operation control (F/FS) program codes, transition (G) program codes and SFC comments. Be careful not to set too many comments to avoid code area overflow. (Refer to "3.1 SFC Performance Specifications" for the code area sizes.)
(2) You cannot use "," in comment statements.

5. OPERATION CONTROL PROGRAMS

5. OPERATION CONTROL PROGRAMS

5.1 Operation Control Programs

(1) Operation control programs
(a) In operation control programs, you can set assignment operation expressions, motion-dedicated functions and bit device control commands.
(b) You can set multiple blocks in a single operation control program.
(c) There are no restrictions on the number of blocks that may be set in a single operation control program. However, one program is within 64k bytes.
(d) The maximum number of characters in one block is 128.
(e) You cannot set transition conditions.

Transition conditions may be set only in transition programs.
An operation control program example is given below.

(2) Priorities of operators and functions

Operators and functions have the following priorities.
Using parentheses allows an operation sequence to be specified freely.

Priority	Item (Operator, Function)
High	Calculation within parentheses ((...))
	Standard function (SIN, COS, etc.), Type conversion (USHORT, LONG, etc.)
	Bit inversion (${ }^{\sim}$), logical negation (!), sign inversion (-)
	Multiplication (*), division (/), remainder (\%)
	Addition (+), subtraction (-)
	Bit left shift (<<), bit right shift (>>)
	Comparison operators: Less than (<), less than or equal to (<<), more than ($>$), more than or equal to ($>=$)
	Comparison operators: Equal to (==), not equal to (!=)
	Bit logical AND (\&)
	Bit exclusive OR (^)
	Bit logical OR (\|)
	Logical AND (*)
	Logical OR (+)
	Assignment (=)

5. OPERATION CONTROL PROGRAMS

(3) Instruction structure

Many of the instructions usable in operation control programs can be divided into instruction and data parts.

The instruction and data parts are used for the following purposes.

- Instruction part.......... Indicates the function of that instruction.
- Data part................... Indicates the data used in the instruction.
"Assignment: =" structure example

(a) Source (S)

1) The source is the data used in an operation.
2) It varies with the device specified in each instruction, as described below.

- Bit or word device

Specify the device which stores the data used in operation.
The data must have been stored in the specified device until the operation is executed.
Changing the data stored in the specified device during program run allows changing the data used in that instruction.

- Constant

Specify the numerical value used in an operation.
As the constant is set during program creation, it cannot be changed during program run.
(b) Destination (D)

1) As the destination data, after-operation data is stored.
2) To the destination data, always set the device for storing the data.
(4) How to specify data

There are the following six different data usable in each instruction.

(a) 16-bit integer type data

The 16-bit integer type data is 16-bit integral value data.
Word devices are used in increments of 1 point.
Data ranges are as indicted below.

	Decimal Representation	Hexadecimal Representation
Data range	K-32768 to K32767	H0000 to HFFFF

(b) 32-bit integer type data

The 32-bit integer type data is 32-bit integral value data.
Word devices are used in increments of 2 points: (specified device number), (specified device number+1). Data ranges are as indicted below.

	Decimal Representation	Hexadecimal Representation
Data range	K-2147483648L to K2147483647L	H00000000L to HFFFFFFFFFL

(c) 64-bit floating-point type data

The 64-bit floating-point type data is IEEE-formatted, 64-bit floating-point value data.
Word devices are used in increments of 4 points: (specified device number), (specified device number+1), (specified device number +2), (specified device number+3).

1) The internal bit locations are as shown below.

2) The represented value is as follows. (The bias value is H3FF.)
$(-1)^{[\text {Sign bit field }]}{ }_{*}(1.0+[$ decimal field $]) * 2($ [Bias exponent field $]$ [bias value $\left.]\right)$
3) Data ranges are as indicted below.

	Decimal Representation	Hexadecimal Representation
Data range	K-1.79E+308 to K-2.23E-308,	H0000000000000000,
	K0.0,	H0010000000000000 to H7FE1CCF385EBC89F,
	K2.23E-308 to K1.79E+308	H8000000000000000,

5. OPERATION CONTROL PROGRAMS

4) A round-off error may be produced in a 64-bit floating-point type data operation. Especially when using 64-bit floating-point type data in a comparison operation, note that a round-off error may cause an intended operation.
Example) In the following transition program, the result of the comparison operation may not become true depending on the value of \#200F due to a round-off error.
```
#100F=SQRT(#200F)
#300F=#100F*#100F
    #200F==#300F
```

(d) Bit data

The bit data is the data where a contact/coil or similar device is handled in increments of 1 bit. It is used in device set ($\mathrm{SET}=$) and device reset ($\mathrm{RST}=$).

(e) Batch bit data

The batch bit data is the data where bit data is handled in increments of $16 / 32$ points. It is used in device input (DIN) and device output (DOUT). As indicated below, whether the bit data is handled in increments of 16 or 32 points is governed by the data type of the word device used as an input destination/output source.

	Increments of 16 Points	Increments of 32 Points
Program example	DIN \#0, M0 DOUT M0, D0	DIN \#OL, M0 DOUT M0, DOL
Used devices	(Specified device number) to (specified device number+15) M0 to M15 in the above program example	(Specified device number) to (specified device number+31) M0 to M31 in the above program example

(f) Logical data

The logical data is a value returned by a bit or comparison conditional expression and indicates whether the result is true or false.
Normally, it is used in the conditional expression of a transition program. In an operation control program, the logical data is used in a bit conditional expression set to device set ($\mathrm{SET}=$) or device reset ($\mathrm{RST}=$).
Example 1
SET M0 = X10

Example 2

Example 3 (transition program)
D0 == K100
\square Logical data

5. OPERATION CONTROL PROGRAMS

5.2 Device Descriptions

Word and bit device descriptions are indicated below.
(1) Word device descriptions

	Device Descriptions			Device Number (n) Specifying Ranges	
	16-bit integer type	32-bit integer type (n is even number)	64-bit floating-point type (n is even number)	A172SHCPUN	A173UHCPU(-S1) /A273UHCPU-S3
Data register	Dn	DnL	DnF	0 to 1023	0 to 8191
Link register	Wn	WnL	Wn:F	0 to 3FF	0 to 1FFF
Timer current value	Tn	-	-	0 to 255	0 to 2047
Counter current value	Cn	-	-	0 to 255	0 to1023
Special register	Dn	DnL	DnF	9000 to 9255	
Motion device	\#n	\#nL	\#nF	0 to 8191	
Coasting timer	-	FT	-	-	

(a) For differentiation, the 32-bit floating-point type is ended by L and the 64-bit floating-point type by F (:F for the link register).
(b) The timer current value T and counter current value C may be used only as a 16-bit integer type.
(c) For the 32-bit integer type and 64-bit floating-point type, specify the device number with an even number. (You cannot use an odd number for setting).
(d) The coasting timer FT is incremented per $888 \mu \mathrm{~s}$. (The coasting timer is a 32-bit integer type.)
(2) Bit device descriptions

		Device Number (n) Specifying Ranges	
		A172SHCPUN /A273UHCPU-S3	
			0 to 1FFF
Input relay	$\mathrm{Xn} / \mathrm{PXn}$	0 to 7FF	0 to 1FFF
Output relay	$\mathrm{Yn} / \mathrm{PYn}$	0 to 2047	0 to 8191
Internal relay	Mn	0 to 2047	0 to 8191
Latch relay	Ln	0 to 3FF	0 to 1FFF
Link relay	Bn	0 to 255	0 to 2047
Annunciator	Fn	0 to 255	0 to 2047
Timer contact	TTn	0 to 255	0 to 2047
Timer coil	TCn	0 to 255	0 to 1023
Counter contact	CTn	0 to 255	0 to 1023
Counter coil	CCn		9000 to 9255
Special relay	Mn		

(a) When using the device in DIN or DOUT as batch bit data, specify n as a multiple of 16 .
(3) Indirect designation of device numbers

In the above word/bit device descriptions, device numbers (n) can be specified indirectly.
(a) Using word device to specify device number (n) indirectly

1) You cannot use the word device with which the device number was specified indirectly.
2) You can use the 16- and 32-bit integer type word devices for indirect designation.
You cannot use the 64-bit floating-point type.
(Description examples)

Good Example	Bad Example
$\#(\mathrm{D} 10)$	$\#(\mathrm{D}(\mathrm{D} 5))$
$\mathrm{D}(\# 10 \mathrm{~L}) \mathrm{F}$	$\mathrm{D}(\# 4 \mathrm{~F})$

(b) Using operation expression to specify device number indirectly

1) Device numbers can be specified indirectly by calculation expressions which use the following data and operators.

Usable data	16-bit integer type word device
	32-bit integer type word device
	16-bit integer type constant
	32-bit integer type constant
Usable operators	Addition: +
	Subtraction: -
	Multiplication: *
	Division: /
	Remainder: \%
	Sign inversion: -

2) You cannot use the word device with which the device number was specified indirectly.
3) Only one operator may be used.
(Description examples)

Good Example	Bad Example
$\#(\mathrm{D} 10-\mathrm{K} 5)$	$\#(\mathrm{D}(\mathrm{D} 5) \mathrm{F}+\mathrm{K} 20)$
$\mathrm{D}(\# 10 \mathrm{~L} \% \mathrm{H} 6 \mathrm{~L}) \mathrm{F}$	$\mathrm{D}(\# 4 \mathrm{~L} \ll \mathrm{~K} 2)$

(Note) : When you want to use the result of calculation other than the above to specify the device number indirectly, describe it in two blocks as shown below.

```
D0=SHORT(ASIN(#OF))
W0=#(D0)
```


5. OPERATION CONTROL PROGRAMS

5.3 Constant Descriptions

The constant descriptions of the 16-bit integer type, 32-bit integer type and 64-bit floating-point type are indicated below.

	16-Bit Integer Type	32-Bit Integer Type	64-Bit Floating-Point Type
Decimal representation	K-32768 to K32767	K-2147483648L to K2147483647L	K-1.79E+308 to K-2.23E-308, K0.0,
Hexadecimal representation	H0000 to HFFFF	H00000000L to HFFFFFFFFL	K2.23E-308 to K1.79E+308

(1) The 32-bit integer type is ended by L and the 64-bit floating-point type is provided with a decimal point and exponent part (E) to denote their data types explicitly.
(2) The constant without the data type is regarded as the applicable minimum type.
(3) The constant in decimal representation is headed by K and the one in hexadecimal representation by H .
K can be omitted.
(4) The 64-bit floating-point type cannot be represented in hexadecimal.

5. OPERATION CONTROL PROGRAMS

5.4 Binary Operations

5.4.1 Substitution :=

F/FS	G
\bigcirc	\bigcirc

Format	Number of Basic Steps
$(\mathrm{D})=(\mathrm{S})$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							
(D)	-	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-	-

(Note): T and C are write-disabled and cannot be used at (D).
(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Word device/constant/calculation expression to be assigned	
(D)	Word device which will store the operation result	Data type of (D)

(3) Functions
(a) The data value specified at (S) is assigned to the specified word device.
(b) When (S) and (D) differ in data type, the data at (S) is converted into the data type of (D) and the resultant data is assigned.
(When (D) is a 16- or 32-bit integer type and (S) is a 64-bit floating-point type, the fraction part of (S) is discarded.)
(4) Errors
(a) An operation error will occur if:

1) The data at (S) is outside the data type range of (D); or
2) (D) or (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which assigns the D0 value to \#0
\square

(b) Program which assigns K123456.789 to DOL

The 64-bit floating-point type is converted into the 32-bit integer type and the result is assigned.
(c) Program which assigns the result of adding K123 and \#0 to W0

$$
W 0=K 123+\# 0
$$

5.4.2 Addition : +

$F / F S$	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1)+(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
$(\mathrm{S} 1)$	Augend data	Data type of (S1) or
(S2)	Addend data	(S2) which is greater

(3) Functions
(a) The data specified at (S2) is added to the data specified at (S 1).
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which assigns the result of adding K123 and \#0 to W0

$$
\mathrm{W} 0=\mathrm{K} 123+\# 0
$$

(b) Program which assigns the result of adding \#0F and \#10 to DOL

The 64-bit floating-point type data are used for addition, and the result is converted into the 32-bit integer type and then assigned.

5.4.3 Subtraction:-

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1)-(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type(F) } \end{gathered}$	Coasting timer	$\begin{gathered} \hline \text { 16-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ \text { (K/H,L) } \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
$(\mathrm{S} 1)$	Minuend data	Data type of (S1) or (S2) which is greater
(S2)	Subtracted data	

(3) Functions
(a) The data specified at (S2) is subtracted from the data specified at (S 1).
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which assigns the result of subtracting \#0 from K123 to W0
W0 = K123 - \#0

(b) Program which assigns the result of subtracting \#10 from \#0F to DOL

The 64-bit floating-point type data are used for subtraction, and the result is converted into the 32-bit integer type and then assigned.

5.4.4 Multiplication : *

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1) \star(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Multiplicand data	Data type of (S1) or (S2) which is greater
(S2)	Multiplier data	

(3) Functions
(a) The data specified at (S1) is multiplied by the data specified at (S2).
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which assigns the result of multiplying K123 by \#0 to W0

W0 $=$ K123 * \#0

(b) Program which assigns the result of multiplying \#0F by \#10 to DOL

The 64-bit floating-point type data are used for multiplication, and the result is converted into the 32-bit integer type and then assigned.

5. OPERATION CONTROL PROGRAMS

5.4.5 Division :/

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1) /(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Dividend data	Data type of (S1) or (S2) which is greater
(S2)	Divisor data	

(3) Functions
(a) The data specified at (S1) is divided by the data specified at (S2) to find a quotient.
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed.
(4) Errors
(a) An operation error will occur if:

1) (S2) is 0 ; or
2) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which divides K123 by \#0 and assigns a quotient to W0
\square

(b) Program which divides \#0F by \#10 and assigns a quotient to DOL

The 64-bit floating-point type data are used for division, and the quotient is converted into the 32-bit integer type and then assigned.

5. OPERATION CONTROL PROGRAMS

5.4.6 Remainder: \%

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1) \%(\mathrm{~S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type(F) } \end{gathered}$	Coasting timer	$\begin{gathered} 16 \text {-bit } \\ \text { integer } \\ \text { type } \\ \text { (K/H) } \\ \hline \end{gathered}$	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
$(\mathrm{S} 1)$	Dividend data	Data type (integer type) of (S1) or (S2) which is greater (Integer type)
(S2)	Divisor data	

(3) Functions
(a) The data specified at (S1) is divided by the data specified at (S2) to find a remainder.
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed.
(4) Errors
(a) An operation error will occur if:

1) (S2) is 0 ; or
2) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which divides K123 by \#0 and assigns a remainder to W0
\square

5. OPERATION CONTROL PROGRAMS

5.5 Bit Operations

5.5.1 Bit inversion (complement) : ~

F/FS	G
\bigcirc	\bigcirc

Format	Number of Basic Steps
${ }^{\sim}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data whose bits will be inverted	Data type of (S) (Integer type)

(3) Functions
(a) The bit inverted value of the data specified at (S) is found.
(4) Errors
(a) An operation error will occur if:
$1)(\mathrm{S})$ is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which finds the bit inverted value of \#0 and assigns the value to D0

5.5.2 Bit logical AND : \&

$F / F S$	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1) \&(\mathrm{~S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data which will be ANDed bit-by-bit	Data type of (S1) or (S2) which is greater (Integer type)
(S2)		

(3) Functions
(a) The bit-by-bit logical product of the data specified at (S1) and the data specified at (S2) is found.
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed. At this time, note that signed data is converted.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which ANDs \#0 and \#1 and assigns the result to D0

5.5.3 Bit logical OR : |

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1) \mid(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data which will be ORed bit-by-bit	Data type of (S1) or (S2) which is greater (Integer type)
(S2)		

(3) Functions
(a) The bit-by-bit logical add of the data specified at (S1) and the data specified at (S2) is found.
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed. At this time, note that signed data is converted.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which ORs \#0 and \#1 and assigns the result to D0

5.5.4 Bit exclusive logical OR : ${ }^{\wedge}$

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1)^{\wedge}(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
$(\mathrm{S} 1)$	Data which will be	Data type of (S1) or (S2) which is greater (Integer type)
(S2)	EXCLUSIVE ORed bit-by-bit	

(3) Functions
(a) The bit-by-bit exclusive logical add of the data specified at (S1) and the data specified at (S2) is found.
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before operation is performed. At this time, note that signed data is converted.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which EXCLUSIVE ORs \#0 and \#1 and assigns the result to D0

D0 = \#0 ^ \#1																									
b15 b0											b15 b0														
											\#0	0	0	1	0	0	1	0	1	0	1	1	0		0
D0	0	0	0	1	10	0	0	0	10	0 0 0	b15 b0														
											\#1	0	0	1	0	1	0	0	1	0	1	0	0	1	0

5. OPERATION CONTROL PROGRAMS

5.5.5 Bit right shift : >>

$F / F S$	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1) \gg(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data to be right-shifted	Data type of (S1) (Integer type)
(S2)	Number of right shifts	

(3) Functions
(a) The data specified at (S1) is shifted to the right by the number of times specified at (S2).
(b) If the most significant bit of (S1) is 1,1 enters the most significant bit of the right shift result.
If the most significant bit of $(\mathrm{S} 1)$ is 0,0 enters the most significant bit of the right shift result.
(c) When (S1) is a 16-bit integer type and (S2) is a negative number or not less than 16, the result is 0 .
(d) When (S1) is a 32-bit integer type and (S2) is a negative number or not less than 32 , the result is 0 .
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which shifts \#0 two bit positions to the right and assigns the result to D0

5.5.6 Bit left shift : <<

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1) \ll(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-
(S2)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data to be left-shifted	Data type of (S1)
(S2)	Number of left shifts	(Integer type)

(3) Functions
(a) The data specified at $(\mathrm{S} 1)$ is shifted to the left by the number of times specified at (S2).
(b) 0 enters the least significant bit of the left shift result.
(c) When (S1) is a 16-bit integer type and (S2) is a negative number or not less than 16, the result is 0 .
(d) When (S1) is a 32-bit integer type and (S2) is a negative number or not less than 32 , the result is 0 .
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which shifts \#0 one bit position to the left and assigns the result to D0

5. OPERATION CONTROL PROGRAMS

5.5.7 Sign inversion (complement of 2) : -

$F / F S$	G
O	O

Format	Number of Basic Steps
$-(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} 32-\mathrm{bit} \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data whose sign will be inverted	Data type of (S)

(3) Functions
(a) The sign-inverted value of the data specified at (S) is found.
(4) Errors
(a) An operation error will occur if:

1) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which assigns the sign-inverted value of \#0 to D0
\square
D0 -123 \#0

5. OPERATION CONTROL PROGRAMS

5.6 Standard Functions

5.6.1 Sine : SIN

F/FS	G
O	O

Format	Number of Basic Steps
$\operatorname{SIN}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Angle data on which SIN (sine) operation will be performed	Floating-point type

(3) Functions
(a) SIN (sine) operation is performed on the data specified at (S).
(b) The data specified at (S) is in an angle (degree) unit.
(c) If (S) is an integer type, it is converted into a floating-point type before operation is performed.
(4) Errors
(a) An operation error will occur if:
$1)(S)$ is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which performs the SIN operation of D0 and assigns the result to \#OF

5. OPERATION CONTROL PROGRAMS

5.6.2 Cosine: COS

F/FS	G
O	O

Format	Number of Basic Steps
$\cos (S)$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floating- point type(F)	Coasting timer	$\begin{gathered} \hline 16-\mathrm{bit} \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \\ \hline \end{gathered}$			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Angle data on which COS (cosine) operation will be performed	Floating-point type

(3) Functions
(a) COS (cosine) operation is performed on the data specified at (S).
(b) The data specified at (S) is in an angle (degree) unit.
(c) If (S) is an integer type, it is converted into a floating-point type before operation is performed.
(4) Errors
(a) An operation error will occur if:
$1)(S)$ is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which performs the COS operation of DO and assigns the result to \#OF

\# $\mathrm{OF}=\mathrm{COS}(\mathrm{DO}$)					
\#3	\#2	\#1	\#0	\longleftarrow - D0	
0.5					60

5.6.3 Tangent: TAN

$F / F S$	G
O	O

Format	Number of Basic Steps
$\operatorname{TAN}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Angle data on which TAN (tangent) operation will be performed	Floating-point type

(3) Functions
(a) TAN (tangent) operation is performed on the data specified at (S).
(b) The data specified at (S) is in an angle (degree) unit.
(c) If (S) is an integer type, it is converted into a floating-point type before operation is performed.
(4) Errors
(a) An operation error will occur if:
$1)(\mathrm{S})$ is an indirectly specified device and its device number is outside the range; or
2) (S) is $90+(180 * n)$. (n is an integer)
(5) Program examples
(a) Program which performs the TAN operation of DO and assigns the result to \#OF

\# 0 F = TAN(D0)	
\#3 \#2 \#1 \#0	
0.57735026918963	30

5. OPERATION CONTROL PROGRAMS

5.6.4 Arcsine : ASIN

F/FS	G
O	O

Format	Number of Basic Steps
$\operatorname{ASIN}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	SIN value data on which SIN^{-1} (arcsine) operation will be performed	Floating-point type

(3) Functions
(a) SIN^{-1} (arcsine) operation is performed on the SIN value data specified at (S) to find an angle.
(b) The SIN value specified at (S) must be within the range -1.0 to 1.0 .
(c) The operation result is in an angle (degree) unit.
(d) If (S) is an integer type, it is converted into a floating-point type before operation is performed.
(4) Errors
(a) An operation error will occur if:

1) (S) is outside the range -1.0 to 1.0 ; or
2) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which performs the SIN^{-1} (arcsine) operation of D0 and assigns the result to \#0F
$\left.\begin{array}{l}\text { \#0F }=\mathrm{ASIN}(\mathrm{DO}) \\ \# 3 \\ \hline\end{array}\right)$

5. OPERATION CONTROL PROGRAMS

5.6.5 Arccosine : ACOS

F/FS	G
O	O

Format	Number of Basic Steps
$\operatorname{ACOS}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	COS value data on which COS $^{-1}$ (arccosine) operation will be performed	Floating-point type

(3) Functions
(a) COS^{-1} (arccosine) operation is performed on the COS value data specified at (S) to find an angle.
(b) The COS value specified at (S) must be within the range -1.0 to 1.0 .
(c) The operation result is in an angle (degree) unit.
(d) If (S) is an integer type, it is converted into a floating-point type before operation is performed.
(4) Errors
(a) An operation error will occur if:

1) (S) is outside the range -1.0 to 1.0 ; or
2) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which performs the COS^{-1} (arccosine) operation of D0F and assigns the result to \#0F

\#0F = ACOS(D0F)							
\#3	\#2	\#1	\#0	D3	D2	D1	D0
60.0					0.5		

5. OPERATION CONTROL PROGRAMS

5.6.6 Arctangent : ATAN

$F / F S$	G
O	O

Format	Number of Basic Steps
$\operatorname{ATAN}(S)$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	TAN value data on which TAN $^{-1}$ (arctangent) operation will be performed	Floating-point type

(3) Functions
(a) TAN $^{-1}$ (arccosine) operation is performed on the TAN value data specified at (S) to find an angle.
(b) The operation result is in an angle (degree) unit.
(c) If (S) is an integer type, it is converted into a floating-point type before operation is performed.
(4) Errors
(a) An operation error will occur if:

1) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which performs the TAN $^{-1}$ (arctangent) operation of DOF and assigns the result to \#0F

5.6.7 Square root : SQRT

$F / F S$	G
O	O

Format	Number of Basic Steps
$\operatorname{SQRT}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data on which square root operation will be performed	Floating-point type

(3) Functions
(a) The square root of the data specified at (S) is found.
(b) Only a positive number may be specified at (S). (Operation cannot be performed with a negative number.)
(c) If (S) is an integer type, it is converted into a floating-point type before operation is performed.
(4) Errors
(a) An operation error will occur if:

1) (S) is a negative number; or
2) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which finds the square root of D0F and assigns the result to \#0F

5. OPERATION CONTROL PROGRAMS

5.6.8 Natural logarithm : LN

$F / F S$	G
O	O

Format	Number of Basic Steps
$\mathrm{LN}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data on which natural logarithm operation will be performed	Floating-point type

(3) Functions
(a) The base e natural logarithm of the data specified at (S) is found.
(b) Only a positive number may be specified at (S). (Operation cannot be performed with a negative number.)
(c) If (S) is an integer type, it is converted into a floating-point type before operation is performed.
(4) Errors
(a) An operation error will occur if:

1) (S) is 0 or a negative number; or
2) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which finds the natural logarithm of D0F and assigns the result to \#0F

5. OPERATION CONTROL PROGRAMS

5.6.9 Exponential operation : EXP

$F / F S$	G
O	O

Format	Number of Basic Steps
$\operatorname{EXP}(S)$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data on which exponential operation will be performed	Floating-point type

(3) Functions
(a) Exponential operation is performed on the base e data specified at (S).
(b) If (S) is an integer type, it is converted into a floating-point type before operation is performed.
(4) Errors
(a) An operation error will occur if:

1) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which performs exponential operation of D0F and assigns the result to \#0F

5. OPERATION CONTROL PROGRAMS

5.6.10 Absolute value : ABS

F/FS	G
O	O

Format	Number of Basic Steps
$\mathrm{ABS}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data on which absolute value conversion will be performed	Data type of (S)

(3) Functions
(a) The absolute value of the data specified at (S) is found.
(4) Errors
(a) An operation error will occur if:

1) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which finds the absolute value of DOF and assigns the result to \#OF

5. OPERATION CONTROL PROGRAMS

5.6.11 Round-off : RND

F/FS	G
O	O

Format	Number of Basic Steps
$\operatorname{RND}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data whose fractional portion will be rounded off	Data type of (S)

(3) Functions
(a) The rounded-off fractional portion value of the data specified at (S) is found.
(b) If (S) is a negative number, the absolute value of (S) is found and its fractional portion is rounded off and signed.
(c) If (S) is an integer type, its value is returned unchanged, with no conversion processing performed.
(4) Errors
(a) An operation error will occur if:

1) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which finds the rounded-off fractional portion value of DOF and assigns the result to \#0F

(b) Program which finds the rounded-off fractional portion value of D4F and assigns the result to \#0F (when D4F is a negative number)

| \#0F $=$ RND(D4F) |
| :--- | :--- | :--- | :--- | :--- |
| \#3 \#2 \#1 \#0 |

5. OPERATION CONTROL PROGRAMS

5.6.12 Round-down : FIX

$F / F S$	G
O	O

Format	Number of Basic Steps
FIX(S)	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data whose fractional portion will be rounded down	Data type of (S)

(3) Functions
(a) The largest integer not greater than the data specified at (S) is found.
(b) If the (S) value is positive, the absolute value will be smaller, and if it is negative, the absolute value will be greater.
(c) If (S) is an integer type, its value is returned unchanged, with no conversion processing performed.
(4) Errors
(a) An operation error will occur if:

1) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which finds the rounded-down fractional portion value of DOF and assigns the result to \#0F

(b) Program which finds the rounded-down fractional portion value of D4F and assigns the result to \#0F (when D4F is a negative number)

5. OPERATION CONTROL PROGRAMS

5.6.13 Round-up : FUP

$F / F S$	G
O	O

Format	Number of Basic Steps
FUP(S)	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data whose fractional portion will be rounded up	Data type of (S)

(3) Functions
(a) The smallest integer not less than the data specified at (S) is found.
(b) If the (S) value is positive, the absolute value will be greater, and if it is negative, the absolute value will be smaller.
(c) If (S) is an integer type, its value is returned unchanged, with no conversion processing performed.
(4) Errors
(a) An operation error will occur if:

1) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which finds the rounded-up fractional portion value of DOF and assigns the result to \#0F

(b) Program which finds the rounded-up fractional portion value of D4F and assigns the result to \#0F (when D4F is a negative number)

5.6.14 BCD $\rightarrow \mathrm{BIN}$ conversion : BIN

F/FS	G
O	O

Format	Number of Basic Steps
$\operatorname{BIN}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	BCD data which will be converted into BIN data	Data type of (S) (Integer type)

(3) Functions
(a) The BCD data specified at (S) is converted into BIN data.
(b) If (S) is a 16-bit integer type, the data range is 0 to 9999 .
(c) If (S) is a 32-bit integer type, the data range is 0 to 9999999 .
(4) Errors
(a) An operation error will occur if:

1) A value other than 0 to 9 is in any digit of (S); or
2) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which converts the BCD data of DO into BIN data and assigns the result to \#0

5.6.15 $\mathrm{BIN} \rightarrow \mathrm{BCD}$ conversion : BCD

$F / F S$	G
O	O

Format	Number of Basic Steps
$\operatorname{BCD}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	BIN data which will be converted into BCD data	Data type of (S) (Integer type)

(3) Functions
(a) The BIN data specified at (S) is converted into BCD data.
(b) If (S) is a 16-bit integer type, the data range is 0 to 9999.
(c) If (S) is a 32-bit integer type, the data range is 0 to 99999999.
(4) Errors
(a) An operation error will occur if:

1) The data is other than 0 to 9999 when (S) is a 16-bit integer type;
2) The data is other than 0 to 99999999 when (S) is a 32-bit integer type; or
3) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which converts the BIN data of DO into BCD data and assigns the result to \#0

5. OPERATION CONTROL PROGRAMS

5.7 Type Conversions

5.7.1 Signed 16-bit integral value conversion : SHORT

F/FS	G
O	O

Format	Number of Basic Steps
SHORT(S)	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data which will be converted into signed 16-bit integral value	16-bit integer type

(3) Functions
(a) The data specified at (S) is converted into a signed 16-bit integral value.
(b) The data range of (S) is -32768 to 32767 .
(c) When (S) is a 64-bit floating-point type, its fractional portion is rounded down before conversion is made.
(d) If (S) is a 16-bit integer type, its value is returned unchanged, with no conversion processing performed.
(4) Errors
(a) An operation error will occur if:

1) The (S) data is outside the range -32768 to 32767 ; or
2) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which converts the data of DOL into a signed 16-bit integral value and assigns the result to \#0

5.7.2 Unsigned 16-bit integral value conversion : USHORT

F/FS	G
O	O

Format	Number of Basic Steps
USHORT(S)	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data which will be converted into unsigned 16-bit integral value	16-bit integer type

(3) Functions
(a) The data specified at (S) is converted into an unsigned 16-bit integral value.
(b) The data range of (S) is 0 to 65535 .
(c) When (S) is a 64-bit floating-point type, its fractional portion is rounded down before conversion is made.
(d) If (S) is a 16-bit integer type, its value is returned unchanged, with no conversion processing performed.
(4) Errors
(a) An operation error will occur if:

1) The (S) data is outside the range 0 to 65535; or
2) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which converts the data of DOL into an unsigned 16-bit integral value and assigns the result to \#0

5. OPERATION CONTROL PROGRAMS

5.7.3 Signed 32-bit integral value conversion : LONG

F/FS	G			
O	O	\quad	\quad Format	Number of Basic Steps
:---:	:---:			
	LONG(S)			

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data which will be converted into signed 32-bit integral value	32-bit integer type

(3) Functions
(a) The data specified at (S) is converted into a signed 32-bit integral value.
(b) The data range of (S) is -2147483648 to 2147483647 .
(c) When (S) is a 64-bit floating-point type, its fractional portion is rounded down before conversion is made.
(d) If (S) is a 32-bit integer type, its value is returned unchanged, with no conversion processing performed.
(4) Errors
(a) An operation error will occur if:

1) The (S) data is outside the range -2147483648 to 2147483647 ; or
2) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which converts the data of D0 into a signed 32-bit integral value and assigns the result to \#0L

5.7.4 Unsigned 32-bit integral value conversion : ULONG

F/FS	G
O	O

Format	Number of Basic Steps
$\operatorname{ULONG}(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data which will be converted into unsigned 32-bit integral value	32-bit integer type

(3) Functions
(a) The data specified at (S) is converted into an unsigned 32-bit integral value.
(b) The data range of (S) is 0 to 4294967295 .
(c) When (S) is a 64-bit floating-point type, its fractional portion is rounded down before conversion is made.
(d) If (S) is a 32-bit integer type, its value is returned unchanged, with no conversion processing performed.
(4) Errors
(a) An operation error will occur if:

1) The (S) data is outside the range 0 to 4294967295 ; or
2) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which converts the data of D0 into an unsigned 32-bit integral value and assigns the result to \#0L

5.7.5 Signed 64-bit floating-point value conversion : FLOAT

F/FS	G
O	O

Format	Number of Basic Steps
FLOAT(S)	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data which will be converted into signed 64-bit floating-point value	64-bit floating-point type

(3) Functions
(a) The data specified at (S) is converted into a signed 64-bit floating-point value.
(b) If (S) is a 64-bit floating-point type, its value is returned unchanged, with no conversion processing performed.
(4) Errors
(a) An operation error will occur if:
$1)(S)$ is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which converts the data of DOL into a signed 64-bit floating-point value and assigns the result to \#0F

5.7.6 Unsigned 64-bit floating-point value conversion : UFLOAT

$F / F S$	G
O	O

Format	Number of Basic Steps
$\operatorname{UFLOAT}(S)$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data which will be converted into unsigned 64-bit floating-point value	64-bit floating-point type

(3) Functions
(a) The data specified at (S) is converted into an unsigned 64-bit floating-point value.
(b) If (S) is a 64-bit floating-point type, its value is returned unchanged, with no conversion processing performed.
(4) Errors
(a) An operation error will occur if:

1) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which converts the data of DOL into an unsigned 64-bit floatingpoint value and assigns the result to \#0F

5. OPERATION CONTROL PROGRAMS

5.8 Bit Device Statuses

5.8.1 ON (normally open contact) : (None)

F/FS	G
\bigcirc	\bigcirc

Format	Number of Basic Steps
(S)	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	\bigcirc	-	-	-	-	-	-	-	-	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Bit device used in bit conditional expression	Logical type (true/false)

(3) Functions
(a) True is returned when the bit device specified at (S) in a bit conditional expression is ON (1), or false is returned when that bit device is OFF (0).
(4) Errors
(a) An operation error will occur if:
$1)(\mathrm{S})$ is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which sets M100 when either of M0 and X0 is ON (1)
\square

5. OPERATION CONTROL PROGRAMS

5.8.2 OFF (normally closed contact) : !

F/FS	G
O	O

Format	Number of Basic Steps
$!(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S)	\bigcirc	-	-	-	-	-	-	-	-	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Bit device used in bit conditional expression	Logical type (true/false)

(3) Functions
(a) True is returned when the bit device specified at (S) in a bit conditional expression is OFF (0), or false is returned when that bit device is ON (1).
(4) Errors
(a) An operation error will occur if:
$1)(\mathrm{S})$ is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which resets M100 when M0 is OFF (0)
RST M100 = !M0
\square
\square (True)

5. OPERATION CONTROL PROGRAMS

5.9 Bit Device Controls

5.9.1 Device set : SET=

F/FS	G
\bigcirc	\bigcirc

Format	Number of Basic Steps
$\operatorname{SET}(\mathrm{D})=(\mathrm{S})$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(D)	\bigcirc	-	-	-	-	-	-	-	-	-	-
(S)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

(Note) • PX, TT and CT are write-disabled and cannot be used at (D).

- At (D), you cannot use M2001 to M2032 with the A273UH-S3 or M2001 to M2008 with the A172SH.
(2) Data to be set

Data to be Set	Description	Data Type of Result
(D)	Bit data for device set	Bit logical type
(S)	Condition data which determines whether device set will be performed or not	

(3) Functions
(a) If the data specified at (S) is true, the bit data specified at (D) is set.
(b) (S) can be omitted.

At this time, the format is "SET(D)" and device set is made unconditionally.
(c) When this instruction is set as a transition condition in the last block of a transient program, whether the data specified at (S) is true or false is returned as logical type data.
In this case, (S) cannot be omitted.
(4) Errors
(a) An operation error will occur if:

1) (D) or (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which sets M100 when either of M 0 and X 0 is 1
SET M100 = M0 + X0

(b) Program which sets M100 when \#0 is equal to D0
SET M100 = \#0 = = D0

(c) Program which sets YO unconditionally
\square

Yo \square

5. OPERATION CONTROL PROGRAMS

5.9.2 Device reset : RST=

$F / F S$	G
O	O

Format	Number of Basic Steps
$\operatorname{RST}(\mathrm{D})=(\mathrm{S})$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(D)	\bigcirc	-	-	-	-	-	-	-	-	-	-
(S)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

(Note) • PX, TT and CT are write-disabled and cannot be used at (D).

- At (D), you cannot use M2001 to M2032 with the A273UH-S3 or M2001 to M2008 with the A172SH.
(2) Data to be set

Data to be Set	Description	Data Type of Result
(D)	Bit data for device reset	Bit logical type
(S)	Condition data which determines whether device reset will be performed or not	

(3) Functions
(a) If the data specified at (S) is true, the bit data specified at (D) is reset.
(b) (S) can be omitted.

At this time, the format is "RST(D)" and device reset is made unconditionally.
(c) When this instruction is set as a transition condition in the last block of a transient program, whether the data specified at (S) is true or false is returned as logical type data.
In this case, (S) cannot be omitted.
(4) Errors
(a) An operation error will occur if:

1) (D) or (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which resets M100 when either of M0 and X 0 is 1
RST M100 = M0 + X0

5. OPERATION CONTROL PROGRAMS

(b) Program which resets M100 when \#0 is equal to D0
RST M100 = \#0 != D0

(c) Program which resets Y0 unconditionally
RST YO

YO \square

5. OPERATION CONTROL PROGRAMS

5.9.3 Device output : DOUT

F/FS	G
O	O

Format	Number of Basic Steps
DOUT(D), (S)	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(D)	\bigcirc	-	-	-	-	-	-	-	-	-	-
(S)	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	-

(Note) • PX, TT, CT and special M cannot be used at (D).

- At (D), you cannot use the range including M2000 to M2127 with the A273UH-S3 or the range including M2000 to M2047 with the A172SH.
(2) Data to be set

Data to be Set	Description	Data Type of Result
(D)	Output destination bit data	Batch bit
(S)	Output source data	

(3) Functions
(a) The data specified at (S) is output to the bit data specified at (D).
(b) Specify a multiple of 16 as the device number of the bit data specified at (D).
(c) If the type of (S) is a 16-bit integer type, 16 points of the (S) data, starting at the least significant bit, are output in order to the bit devices headed by the one specified at (D).
(d) If the type of (S) is a 32-bit integer type, 32 points of the (S) data, starting at the least significant bit, are output in order to the bit devices headed by the one specified at (D).
(4) Errors
(a) An operation error will occur if:

1) (D) or (S) is an indirectly specified device and its device number is outside the range.
2) (D) is an indirectly specified device and its device number is not a multiple of 16.
(5) Program examples
(a) Program which outputs the data of DO to YO-YF

DOUT Y0, D0

5.9.4 Device input: DIN

$F / F S$	G
O	O

Format	Number of Basic Steps
$\operatorname{DIN}(D),(S)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(D)	-	\bigcirc	\bigcirc	-	-	-	-	-	-	-	-
(S)	\bigcirc	-	-	-	-	-	-	-	-	-	-

(Note) : T and C are write-disabled and cannot be used at (D).
(2) Data to be set

Data to be Set	Description	Data Type of Result
(D)	Input destination data	Data type of (D) (Integer type)
(S)	Input source bit data	

(3) Functions
(a) The bit data specified at (S) is input to the data specified at (D).
(b) Specify a multiple of 16 as the device number of the bit data specified at (S).
(c) If the type of (D) is a 16-bit integer type, 16 points of the (D) data, starting at the least significant bit, are input in order to the bit devices headed by the one specified at (S).
(d) If the type of (D) is a 32-bit integer type, 32 points of the (D) data, starting at the least significant bit, are input in order to the bit devices headed by the one specified at (S).
(4) Errors
(a) An operation error will occur if:

1) (D) or (S) is an indirectly specified device and its device number is outside the range.
2) (S) is an indirectly specified device and its device number is not a multiple of 16.
(5) Program examples
(a) Program which inputs the data of $\mathrm{XO}-\mathrm{XF}$ to D 0

> DIN D0, X0

5. OPERATION CONTROL PROGRAMS

5.10 Logical Operations

5.10.1 Logical acknowledgement : (None)

F/FS	G
\bigcirc	\bigcirc

Format	Number of Basic Steps
(S)	-

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data which will be logically acknowledged	Logical type (true/false)

(3) Functions
(a) Whether the logical type data specified at (S) is true or false is returned unchanged. (Logical acknowledgement)
(4) Errors
(a) An operation error will occur if:
$1)(\mathrm{S})$ is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which sets M100 when either of M0 and X0 is ON (1)
SET M100 = M0 + X0

5.10.2 Logical negation :!

$F / F S$	G
O	O

Format	Number of Basic Steps
$!(\mathrm{S})$	2

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Data which will be logically negated	Logical type (true/false)

(3) Functions
(a) The data specified at (S) is logically negated.
(4) Errors
(a) An operation error will occur if:

1) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which sets M100 when "either of M0 and X0 is not ON (1)" (i.e. when M0 and X0 are both OFF (0))
SET M100 = !(M0 + X0)

5. OPERATION CONTROL PROGRAMS

5.10.3 Logical AND : *

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1)^{*}(\mathrm{~S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type(F) } \end{gathered}$	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S1)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc
(S2)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data which will be ANDed	Logical type (true/false)
(S2)		

(3) Functions
(a) The data specified at (S1) and the data specified at (S2) are ANDed.
(4) Errors
(a) An operation error will occur if:

1) (S) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which sets M100 when M0 and X0 are both 1
\square

5.10.4 Logical OR : +

$F / F S$	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1)+(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type(F) } \end{gathered}$	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S1)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc
(S2)	\bigcirc	-	-	-	-	-	-	-	-	\bigcirc	\bigcirc

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data which will be ORed	Logical type (true/false)
(S2)	Dan	

(3) Functions
(a) The data specified at (S1) and the data specified at (S2) are ORed.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which sets M100 when either of M0 and X0 is 1
\square

5.11 Comparison Operations

5.11.1 Equal to : ==

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1)==(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bitconditional expression	Compar-isonconditionalexpression
		16-bit integer type	32-bit integer type(L)	64-bit floating point type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data which will be compared	Logical type (true/false)
(S2)		

(3) Functions
(a) The data specified at (S1) and the data specified at (S2) are compared, and the result is true if they are equal.
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which compares whether \#0 and D0 are equal or not

5.11.2 Not equal to : ! $=$

$F / F S$	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1)!=(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	$\begin{gathered} 64-\mathrm{bit} \\ \text { floating- } \\ \text { point } \\ \text { type(F) } \\ \hline \end{gathered}$	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data which will be compared	Logical type (true/false)
(S2)		

(3) Functions
(a) The data specified at (S1) and the data specified at (S2) are compared, and the result is true if they are not equal.
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which compares whether \#0 and D0 are unequal or not
\#0 != D0

5. OPERATION CONTROL PROGRAMS

5.11.3 Less than : <

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1)<(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floating- point type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data which will be compared	Logical type (true/false)
(S2)		

(3) Functions
(a) The result is true if the data specified at (S 1) is less than the data specified at (S2).
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which compares whether \#0 is less than D0 or not
\# 0 < D0

5. OPERATION CONTROL PROGRAMS

5.11.4 Less than or equal to: <=

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1)<=(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data which will be compared	Logical type (true/false)
(S2)		

(3) Functions
(a) The result is true if the data specified at (S1) is less than or equal to the data specified at (S2).
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which compares whether \#0 is less than or equal to D0 or not
\#0 <= D0

5. OPERATION CONTROL PROGRAMS

5.11.5 More than : >

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1)>(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	$\begin{gathered} \hline 64 \text {-bit } \\ \text { floating- } \\ \text { point } \\ \text { type(F) } \\ \hline \end{gathered}$	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data which will be compared	Logical type (true/false)
(S2)		

(3) Functions
(a) The result is true if the data specified at (S1) is greater than the data specified at (S2).
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which compares whether \#0 is greater than D0 or not
\square

5. OPERATION CONTROL PROGRAMS

5.11.6 More than or equal to: >=

F/FS	G
O	O

Format	Number of Basic Steps
$(\mathrm{S} 1)>=(\mathrm{S} 2)$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type(F) } \end{gathered}$	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(S1)	-	\bigcirc	-	-							
(S2)	-	\bigcirc	-	-							

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Data which will be compared	Logical type (true/false)
(S2)		

(3) Functions
(a) The result is true if the data specified at (S1) is greater than or equal to the data specified at (S2).
(b) When (S1) and (S2) differ in data type, the data of the smaller data type is converted into that of the greater type before comparison is performed.
(4) Errors
(a) An operation error will occur if:

1) (S1) or (S2) is an indirectly specified device and its device number is outside the range.
(5) Program examples
(a) Program which compares whether \#0 is greater than or equal to D0 or not
\# 0 >= D0

\#0
D0
200
20

5. OPERATION CONTROL PROGRAMS

5.12 Motion-Dedicated Functions (CHGV, CHGT)

5.12.1 Speed change request : CHGV

F/FS	G			
\bigcirc	\bigcirc	\quad	\quad Format	Number of Basic Steps
:---:	:---:			

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S1)	-	-	-	-	-	\bigcirc	-	-	-	-	-
(S2)	-	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Axis number to which speed change request will be given	
(S2)	Specified speed	

(3) Functions
(a) A speed change is made in the following procedure.

1) The speed changing flag (M2021 to M2028/M2061 to M2092) corresponding to the axis specified at (S1) is turned ON.
2) The speed of the axis specified at (S1) is changed to the speed specified at (S2).
3) The speed changing flag is turned OFF.
(b) The axis number that may be set at (S1) is within the following range.

A172SHCPUN	A173UHCPU(-S1)/
	A273UHCPU-S3(32-axis feature)
1 to 8	1 to 32

For interpolation control, set any one of the interpolation axes.
When linear interpolation control is exercised, a speed change varies as described below with the positioning speed designation method set in the servo program.

Positioning Speed Designation Method	Operation
Combined speed designation	A speed change is made so that the combined speed becomes the speed specified at (S2).
Longest axis designation	A speed change is made so that the longest axis speed becomes the speed specified at (S2).
Reference axis speed designation	A speed change is made so that the reference axis speed becomes the speed specified at (S2).

(c) Operation varies with the sign of the specified speed set at (S2).

Sign of Specified Speed	Operation
Positive	Speed change
0	Temporary stop
Negative	Return

5. OPERATION CONTROL PROGRAMS

(d) The specified speed that may be set at (S2) is within the following range.

1) Real mode

	mm		inch		degree		PULSE	
	Setting range	Unit						
Speed change request	$\begin{gathered} 0 \text { to } \\ 600000000 \end{gathered}$	$\times 10^{-2}$ $\mathrm{mm} / \mathrm{min}$	$\begin{gathered} 0 \text { to } \\ 600000000 \end{gathered}$	$\begin{gathered} \times 10^{-3} \\ \text { inch } / \mathrm{min} \end{gathered}$	$\begin{gathered} 0 \text { to } \\ 2147483647 \end{gathered}$	$\times 10^{-3}$ degree $/$ min	$\begin{gathered} 0 \text { to } \\ 10000000 \\ \hline \end{gathered}$	PLS/s
Return request	$\begin{gathered} -1 \text { to } \\ -600000000 \end{gathered}$	$\times 10^{-2}$ $\mathrm{mm} / \mathrm{min}$	$\begin{gathered} -1 \text { to } \\ -600000000 \end{gathered}$	$\times 10^{-3}$ inch/min	$\begin{gathered} -1 \text { to } \\ -2147483647 \end{gathered}$	$\times 10^{-3}$ degree/min	$\begin{gathered} -1 \text { to } \\ -10000000 \end{gathered}$	PLS/s

2) Virtual mode

	PULSE	
	Setting range	Unit
Speed change request	0 to 10000000	PLS/s
Return request	-1 to -10000000	PLS/s

(e) Specifying a negative speed and making a speed change request during starting allows the axis to start deceleration at that point and return in the opposite direction upon completion of deceleration.
Operation varies with the servo instruction as described below.

Control Mode	Servo Instruction	Operation
Linear control	ABS-1 INC-1 ABS-2 INC-2 ABS-3 INC-3 INBS-4 INC-4 An	On completion of deceleration, the axis reverses its moving direction, returns to the positioning starting point at the absolute value of the specified speed, and stops (waits) there. For circular interpolation, the axis returns in the circular path.
Circular interpolation control	ABS circular INC circular	
Fixed-pitch feed	FEED-1 FEED-2 FEED-3	
Constant-speed control	CPSTART1 CPSTART2 CPSTART3 CPSTART4	On completion of deceleration, the axis reverses its moving direction, returns to the preceding point at the absolute value of the specified speed, and stops (waits) there.
Speed control (I)	VF VR	On completion of deceleration, the axis reverses its moving direction at the absolute value of the specified speed. The axis does not stop until a stop command is input.
Speed control (II)	VVF VVR	
Speed/position control	VPF VPR VPSTART	The axis cannot return. The speed change request is regarded as a normal speed change request. Minor error 305 will occur and the axis will be controlled at the speed limit value.
Position followup control	PFSTART	
Speed change control	VSTART	
JOG operation		
High-speed oscillation	OSC	A speed change cannot be made. Minor error 310 will occur.
Zeroing	ZERO	A speed change cannot be made. Minor error 301 will occur.

Reference) Minor error 301: A speed change was made during zeroing.
Minor error 305: The preset speed is outside the range 0 to speed limit value.
Minor error 310: A speed change was made during high-speed oscillation.

5. OPERATION CONTROL PROGRAMS

[Controls]
(a) If a speed change is made to a negative speed, control varies with the control mode during starting as indicated in the table in Section 5.12.1(3)(e).
(b) The returning command speed is the absolute value of a new speed.
(c) When the axis is waiting at the return position

1) Signal states

- Start acceptance (M200n) ON (unchanged from before execution of CHGV execution)
- Positioning start completion (M16m0) ON
(unchanged from before execution of CHGV execution)
- Positioning completion (M16m1)

OFF

- In-position (M16m2)

ON

- Command in-position (M16m3) OFF
- Speed change "0" accepting flag (-) ON

2) Make a speed change to a positive speed for a restart.
3) Turn ON the stop command to terminate positioning.
4) A negative speed change made again will be ignored.
(d) While the axis is returning in the speed control mode
5) Make a speed change to a positive speed to change the moving direction again.
6) Turn ON the stop command to make a stop.
7) A speed change is made in the opposite direction if a negative speed change is made again.
(4) Errors
(a) An operation error will occur and a speed change will not be made if:
8) The specified axis number at (S 1) is outside the range; or
9) (S2) is an indirectly specified device and its device number is outside the range.
(b) A minor error will occur and a speed change will not be made if:
10) The axis specified at (S1) is zeroing; or
11) The axis specified at (S1) is decelerating (minor error 303).
(c) A minor error will occur and the axis to be controlled at the speed limit value if:
12) The absolute value of the speed specified at (S2) is greater than the speed limit value.
(Minor error 305)
POINT
If, during constant-speed control, the absolute value of a negative new speed is higher than the speed specified in the servo program, return control is exercised at the speed specified in the program (speed clamp control for a speed change during constant-speed control).
At this time, an error will not occur.
(5) Program examples
(a) Program which changes the positioning speed of axis 2

> CHGV(K2,K10)
(b) Return program which changes the positioning speed of axis 1 to a negative value

CHGV(K1,K-1000)

The following operation will be performed when a return request is made in constant-speed control.

If a speed change to a negative speed is made during execution of positioning to P 2 as shown above, the axis returns to P 1 along the programspecified locus and waits at P1.

POINT

Speed changing instructions
(1) A speed change may be invalid if it is made from when a servo program start request is made until the "positioning start completion signal" status changes to ON. When making a speed change at almost the same timing as a start, always create a program which will execute the speed change after the "positioning start completion signal" has turned ON.
(2) A return request, which is made while the axis is at a stop waiting for FIN using the M code FIN waiting function during constant-speed control, will be ignored.
(3) In the above example, if a return request is given right before P2 and the axis passes through P2 during deceleration, the axis will return to P2.
(4) The speed change " 0 " acceptance flag is not available for the posi-tioning-dedicated devices on the A172SHCPUN.
(5) There will be a delay of time equivalent to an operation cycle at
 the maximum in the response time from when the CHGV instruction is executed until the speed begins to change actually.

5. OPERATION CONTROL PROGRAMS

5.12.2 Torque limit value change request : CHGT

F/FS	G
O	\bigcirc

Format	Number of Basic Steps
$\mathrm{CHGT}((\mathrm{S} 1),(\mathrm{S} 2))$	4

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
(S1)	-	-	-	-	-	\bigcirc	-	-	-	-	-
(S2)	-	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S1)	Axis number to which torque limit value change request will be given	
(S2)	Specified torque limit value	

(3) Functions
(a) The torque limit value of the axis specified at (S1) is changed to the torque limit value axis specified at (S2).
(b) In the real mode, any axis that has completed a servo startup can be changed in torque limit value any time, independently of the status, starting, stopping, servo ON or servo OFF.
(c) The axis number that may be set at (S1) is within the following range.

A172SHCPUN	A173UHCPU(-S1)/ A273UHCPU-S3(32-axes feature)
1 to 8	1 to 32

(d) The torque limit value that may be set at (S2) is within the range 1 to 500[\%].
(e) The torque limit value specified here and the one specified in the servo program have the following relationships.

At start

At a normal start, the torque limit value is given to the servo of the start axis according to "P. torque" set in the servo program or the "torque limit value" of the specified parameter block.
For an interpolation start, the torque limit value is given to the number of axes to be interpolated.

Executing the CHGT instruction gives the preset torque limit value to only the specified axis.

Thereafter, the torque limit value given to the servo at a servo program start or JOG start is made valid only when it is lower than the torque limit value specified in CHGT.
This torque limit value clamp processing is performed per axis.

5. OPERATION CONTROL PROGRAMS

During start

1) If the following torque limit value has been set, it will not be changed to higher than the torque limit value specified in the CHGT instruction.

- Torque limit value at a midway point in constant-speed control or speed change control
- Torque limit value at the point of switching to position control in speed/ position changing control
- Torque limit value in speed control II

2) The CHGT instruction accepts a torque limit value which is higher than the torque limit value set in the servo program or parameter block.
(4) Errors
(a) An operation error will occur and a torque limit value change will not be made if:
3) The specified axis number at (S 1) is outside the range; or
4) (S2) is an indirectly specified device and its device number is outside the range.
(b) A minor error will occur and a torque limit value change will not be made if:
5) The torque limit value specified at (S2) is outside the range 1 to $500[\%]$ (minor error 311); or
6) The CHGT instruction is executed for any axis that has not yet been started (minor error 312).
(5) Program examples
(a) Program which changes the torque limit value of axis 2

CHGT(K2,K10)

POINT
(1) In the virtual mode, the CHGT instruction is invalid (ignored). When changing the torque limit value during operation in the virtual mode, set the "torque limit value setting device" in the output module parameter of the machine mechanism program.
(2) There will be a delay of time equivalent to an operation cycle at the maximum in the response time from when the CHGT instruction is executed until the torque limit value is changed actually.

5. OPERATION CONTROL PROGRAMS

5.13 Other Instructions

5.13.1 Event task enable : El

F/FS	G
O	O

Format	Number of Basic Steps
El	1

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	64-bit floatingpoint type (K)			
-	-	-	-	-	-	-	-	-	-	-	-

(2) Data to be set

There are no data to be set.
(3) Functions
(a) The execution of an event task is enabled.
(b) This instruction is usable with a normal task only.
(4) Errors
(a) An operation error will occur if:

1) This instruction is used with other than a normal task.
(5) Program examples
(a) Enables the execution of an event task.
\square

5.13.2 Event task disable : DI

F/FS	G
O	O

Format	Number of Basic Steps
DI	1

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type(F) } \\ \hline \end{gathered}$	Coasting timer	$\begin{gathered} \hline \text { 16-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ \text { (K/H,L) } \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
-	-	-	-	-	-	-	-	-	-	-	-

(2) Data to be set

There are no data to be set.
(3) Functions
(a) The execution of an event task is disabled.
(b) If an external interrupt or PLC interrupt occurs after execution of the DI instruction, the corresponding event task is executed once at the execution of the El instruction. (If two or more external interrupts or PLC interrupts occur during DI, the corresponding event task is executed only once at the execution of the El instruction.)
(c) During DI, a fixed-cycle event task is not executed.
(d) The execution of an NMI task cannot be disabled.
(e) The DI status is established at power-on or when a reset is made with the RUN/STOP switch.
(4) Errors
(a) An operation error will occur if:

1) This instruction is used with other than a normal task.
(5) Program examples
(a) Program which disables the execution of an event task.
\square
DI

5. OPERATION CONTROL PROGRAMS

5.13.3 No operation : NOP

F/FS	G
O	0

Format	Number of Basic Steps
NOP	1

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	$\begin{gathered} \hline 16-\mathrm{bit} \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \\ \hline \end{gathered}$			
-	-	-	-	-	-	-	-	-	-	-	-

(2) Data to be set There are no data to be set.
(3) Functions
(a) This is a no-operation instruction and does not affect the preceding operations.
(4) Errors
(a) There are no operation errors for no operation: NOP.

5.13.4 Block transfer : BMOV

F/FS	G
O	O

Format	Number of Basic Steps
$\operatorname{BMOV}(\mathrm{D}),(\mathrm{S}),(\mathrm{n})$	7

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	$\begin{gathered} \text { 16-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
(D)	-	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-
(S)	-	\bigcirc	-	-	-	-	\bigcirc	-	-	-	-
(n)	-	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-

(Note) : When a 32-bit integer type constant is specified at (D) or (S), the number specified is the absolute address of the PCPU memory. Specify the absolute address with an even number.
(2) Data to be set

Data to be Set	Description	Data Type of Result
(D)	Transfer destination device starting number	
(S)	Transfer source device starting number	
(n)	Number of words to be transferred	

(3) Functions
(a) n words of data in word devices, starting with the one specified at (S), are batch-transferred to n words of word devices, starting with the one specified at (D).
(b) Data can be transferred if the word devices of the transfer source and destination overlap.
Data are transferred from the devices, starting with the one at (S), for transfer of data from devices of larger numbers to those of smaller numbers, or starting with the one at $(\mathrm{S})+(\mathrm{n}-1)$ for transfer of data from devices of smaller numbers to those of larger numbers.
(c) Specifying Nn (cam number) at (D) or (S) enables batch-transfer of cam data.
In the motion controller, the cam data of the same cam number must already have been registered.
The number of transferred words specified at (n) should match the resolution of the specified cam number.
Operations performed at write and read of cam data are as described below.

At cam data write

- For A172SHCPUN

The cam data storage area is rewritten.

- For A173UHCPU(-S1)/A273UHCPU-S3

The cam data is stored into the extended file register (block 10 and later) but this instruction rewrites the cam data import area in the PCPU. The extended file register contents are not changed.
Therefore, turning the cam data/limit switch output data batch-change request flag (M2056) OFF, then ON, or powering on the controller and resetting it with the key returns the cam data import area to the extended file register contents.

- Transfer of data to the cam data area is also executed during cam operation.
Be careful not to perform write while operation is being performed with the same cam number.
At cam data read
- The cam data in the currently set status are read.
(d) The word devices that may be set at (D), (S) and (n) are as indicated below.

Data to Be Set	Word Devices			Cam Number Designation
	Dn	Wn	\#n	N
(D)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(S)	\bigcirc	\bigcirc	\bigcirc	\bigcirc
(n)	\bigcirc	\bigcirc	\bigcirc	-

(e) The cam number that may be set as Nn is within the following range.

A172SHCPUN	A173UHCPU(-S1) /A273UHCPU-S3
1 to 64	1 to 64
	101 to 164
	201 to 264
	301 to 364

(4) Errors
(a) An operation error will occur if:

1) The cam data of the cam number specified at (D) or (S) are not yet registered to the motion controller;
2) The resolution of the cam number specified at (D) or (S) differs from the number of transferred words specified at (n);
3) The PCPU memory address specified at (D) or (S) is outside the SRAM range;
4) (S) to (S) $+(n-1)$ is outside the device range;
5) (D) to (D) $+(n-1)$ is outside the device range; or when (n) specified is a
$6)(n)$ is 0 or a negative number.
word device
(b) When conversion is made in program editing of the peripheral software, an error will occur if:
6) (S) to $(S)+(n-1)$ is outside the device range;
7) (D) to (D) $+(n-1)$ is outside the device range;
8) (n) is 0 or a negative number; or when (n) specified is a
9) The 32-bit integer type constant (PCPU memory absolute address specified) specified at (D) or (S) is an odd number.

(5) Program examples

(a) Program which batch-transfers 5 words of data in devices, starting with D0, to 5 words of devices, starting with \#10

BMOV \#10,D0,K5

(b) Program which batch-transfers 2048 words of data in devices, starting with \#0, to the data area of cam No. 2 (resolution 2048)

BMOV N2,\#0,K2048

Cam data of cam No. 2

5. OPERATION CONTROL PROGRAMS

5.13.5 Time to wait : TIME

F/FS	G
-	O

Format	Number of Basic Steps
$\operatorname{TIME}(\mathrm{S})$	7

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	$\begin{gathered} \hline \text { 32-bit } \\ \text { integer } \\ \text { type } \\ (\mathrm{K} / \mathrm{H}, \mathrm{~L}) \\ \hline \end{gathered}$	64-bit floatingpoint type (K)			
(S)	-	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-	-	-	-

(2) Data to be set

Data to be Set	Description	Data Type of Result
(S)	Waiting time $(0$ to 2147483647$) \mathrm{ms}$	Logical type (true/false)

(3) Functions

(a) A wait state continues for the time specified at (S).

The result is false when the elapsed time is less than the preset time, or the result is true and execution transits when the preset time has elapsed.
(b) When a 16-bit integer type word device is used to specify any of 32768 to 65535 ms at (S), convert it into an unsigned 16-bit integral value with USHORT. (Refer to the program example.)
(4) Errors
(a) An operation error will occur if:
$1)(\mathrm{S})$ is an indirectly specified device and its device number is outside the range; or
2) Data (device data when device is indirectly specified) at (S) is outside the range 0 to 2147483647.
(5) Program examples
(a) Program which sets a wait of 60 seconds (when constant is specified)

TIME K60000
(b) Program for a case where there may be a wait of 32768 to 65535 ms for 16bit integer type indirect designation (\#0)

TIME USHORT(\#0)
(c) Program which SETS (RSTs) a bit device when the specified time has elapsed

SET M100 = TIME K60000

POINT

(1) When the waiting time setting is indirectly specified with a word device, the value imported first is used as the device value for exercising control. The set time cannot be changed if the device value is changed during a wait state.
(2) The TIME instruction is equivalent to a conditional expression, and therefore may be set on only the last line of a transition (G) program.
(3) When the transition program (Gn) of the same number having the TIME instruction setting is used in multiple SFC programs, avoid running them at the same time. (If they are run simultaneously, the waiting time in the program run first will be illegal.)

5.14 Comment Statement ://

$F / F S$	G
O	O

Format	Number of Basic Steps
$/ /$	-

(1) Usable data

Data to be Set	Usable Data										
	Bit device	Word device				Constant			Calculation expression	Bit conditional expression	Comparison conditional expression
		16-bit integer type	32-bit integer type(L)	64-bit floatingpoint type(F)	Coasting timer	16-bit integer type (K/H)	32-bit integer type (K/H,L)	$\begin{gathered} \text { 64-bit } \\ \text { floating- } \\ \text { point } \\ \text { type (K) } \end{gathered}$			
-	-	-	-	-	-	-	-	-	-	-	-

(2) Data to be set There are no data to be set.
(3) Functions
(a) A character string from after // to a block end is a comment.
(4) Errors
(a) There are no operation errors for comment: //.
(5) Program examples
(a) Example which has commented an assignment program
$\mathrm{D} 0=\mathrm{D} 1 / /$ Assigns the D0 value (16-bit integer data) to D1.

6. TRANSITION PROGRAMS

6.1 Transition Programs

(1) Transition programs
(a) In transition programs, you can set assignment operation expressions, motion-dedicated functions, bit device control commands and transition conditions.
(b) You can set multiple blocks in a single transition program.
(c) There are no restrictions on the number of blocks that may be set in a single transition program.
Note that one program is within 64 k bytes.
(d) The maximum number of characters in one block is 128.
(e) You must set a transition condition in the last block of a transition program. The transition program is repeated until the transition condition enables, and when the transition condition has enabled, it shifts to the next step. The transition condition may be set only in the last block.
(f) As a special transition program, you can create a program where only no operation (NOP) is set in one block.
Use this program when you want to proceed to the next step on completion of a servo program run and there are no special conditions to be set as interlocks. For more information, refer to "4.9 Branches, Couplings". A transition program example is given below.

What can be set as a transition condition in the last block are bit conditional expressions, comparison conditional expressions and device set (SET=)/device reset ($\mathrm{RST}=$) which return logical data values (true/false). In the case of device set ($\mathrm{SET}=$)/device reset ($\mathrm{RST}=$), whether the bit or comparison conditional expression specified at (S) is true or false is a transition condition, and when the transition condition enables, device set/reset is carried out and execution shifts to the next step.
Transition condition description examples are given below.

Classification	Description Example
Bit conditional expression	M 0
	$!\mathrm{M} 0+\mathrm{X} 10 * \mathrm{M} 100$
Comparison conditional expression	$(\mathrm{D} 0>\mathrm{K} 100)+(\mathrm{D} 100 \mathrm{~L}!=\mathrm{K} 20 \mathrm{~L})$
Device set (SET $=)$	$\mathrm{SET} \mathrm{Y0}=\mathrm{M} 100$
Device reset (RST=)	$\mathrm{RST} \mathrm{M} 10=\mathrm{D} 0==\mathrm{K} 100$

POINT

(1) A transition program differs from an operation control program in that a transition condition is set in the last block.
Other settings are the same as those of the operation control program.
(2) When setting device set (SET=)/device reset (RST=) in the last block as a transition condition, you cannot omit the bit or comparison conditional expression to be specified at (S).
(3) You cannot set only the bit or comparison conditional expression in other than the last block. You can set device set ($\mathrm{SET}=$)/device reset ($\mathrm{RST}=$) in other than the last block.

7. MOTION CONTROL PROGRAMS

7. MOTION CONTROL PROGRAMS

7.1 Servo Instruction List

Table 7.2 lists servo instructions used in servo programs.
Refer to Sections 7.2 to 7.4 for details of the present value change control (CHGA, CHGA-E, CHGA-C) which are newly available.
For other servo instructions, refer to the "Motion Controller (SV13/SV22)
Programming Manual (Real Mode)".
(1) Guide to servo instruction list

Table 7.1 Guide to Servo Instruction List

(2) Servo instruction list

Table 7.2 indicates the servo instructions available for servo programs and the positioning data set in servo instructions.

Table 7.2 Servo Instruction List

$\begin{aligned} & \overline{0} \\ & \text { ㄷ } \\ & 0 \\ & 0 \\ & \text { O} \\ & \text { ㄷ } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		Instruction Symbol	Processing	Positioning Data																																	
		Common		Circular				OSC				Parameter block									Others																
				$\begin{array}{\|c\|} \hline \frac{n}{x} \\ \mid \end{array}$				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \Sigma \end{aligned}$							$\begin{aligned} & \frac{0}{0} \\ & \frac{\partial}{2} \\ & \frac{2}{c} \\ & \frac{1}{4} \end{aligned}$											O!̣eג ux				$\begin{array}{\|l\|} \hline \bar{\otimes} \\ \stackrel{0}{\widetilde{O}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{\pi}{\pi} \\ \stackrel{N}{\omega} \end{array}$	$\frac{0}{c}$					
		Virtual enable	0	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc		0	0	0	\bigcirc				0		\bigcirc	0	0	0			0	0	\bigcirc	\bigcirc	0	0		\bigcirc	0	0			
		Number of steps	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	2	2	1	2	1	2			
		Number of indirect words	1		2	2	1	1	1	2	2	2	1	2	2	2	1	1	2	1	1	1	1	1	2	1	1(B)		2	1(B)		1(B)	1	B			
	$\begin{gathered} \stackrel{\infty}{㐅} \\ \underset{\sigma}{\top} \end{gathered}$		ABS-1	Absolute 1-axis positioning	\triangle	O	0	\bigcirc	\triangle	\triangle											\triangle	\triangle	\triangle	\triangle	\triangle	\triangle		\triangle				\triangle					4 to 17
			INC-1	Incremental 1-axis positioning	\triangle	\bigcirc	0	\bigcirc	\triangle	\triangle											\triangle	\triangle	\triangle	\triangle	\triangle	\triangle		\triangle				\triangle					
			ABS-2	Absolute 2-axis linear interpolation	\triangle	\bigcirc	\bigcirc	O	\triangle	\triangle									\bigcirc	\triangle		\triangle				\triangle					5 to 20						
			INC-2	Incremental 2-axis linear interpolation	\triangle	O	O	\bigcirc	\triangle	\triangle									\bigcirc	\triangle		\triangle				\triangle											
			ABS-3	Absolute 3-axis linear interpolation	\triangle	0	0	\bigcirc	\triangle	\triangle									\bigcirc	\triangle		\triangle				\triangle					to 21						
	-	INC-3	Incremental 3-axis linear interpolation	\triangle	0	\bigcirc	\bigcirc	\triangle	\triangle									0	\triangle		\triangle				\triangle					to 21							
		ABS-4	Absolute 4-axis linear interpolation	\triangle	\bigcirc	O	\bigcirc	\triangle	\triangle									\bigcirc	\triangle		\triangle				\triangle					8 to 22							
	$\stackrel{\text { ® }}{\sim}$	INC-4	Incremental 4-axis linear interpolation	\triangle	\bigcirc	O	0	\triangle	\triangle									\bigcirc	\triangle		\triangle				\triangle					8 to 22							
		ABS ${ }^{\text {h }}$	Absolute auxiliary pointspecified circular interpolation	\triangle	0	\bigcirc	\bigcirc	\triangle	\triangle		\bigcirc								\triangle				\triangle					to 22									
	$\begin{array}{\|l\|l\|} \hline \times 8 \\ x_{0}^{\prime} \\ 0 \\ 0 \end{array}$	INC ${ }^{\text {ty }}$	Incremental auxiliary pointspecified circular interpolation	\triangle	\bigcirc	\bigcirc	\bigcirc	\triangle	\triangle		\bigcirc								\triangle				\triangle					7 to 22									
		ABS $<$	Absolute radius-specified circular interpolation less than CW 180°	\triangle	O	O	\bigcirc	\triangle	\triangle			0							\triangle				\triangle					6 to 21									
		ABS	Absolute radius-specified circular interpolation CW 180° or more	\triangle	0	\bigcirc	\bigcirc	\triangle	\triangle			\bigcirc							\triangle				\triangle														
		ABS <a	Absolute radius-specified circular interpolation less than CCW 180°	\triangle	O	O	0	\triangle	\triangle			0							\triangle				\triangle														
		ABS \bigcirc	Absolute radius-specified circular interpolation CCW 180° or more	\triangle	\bigcirc	\bigcirc	\bigcirc	\triangle	\triangle			\bigcirc							\triangle				\triangle														
		INC \downarrow	Incremental radius-specified circular interpolation less than CW 180°	\triangle	0	0	0	\triangle	\triangle			0							\triangle				\triangle														
		INC \triangle	Incremental radius-specified circular interpolation CW 180° or more	\triangle	0	0	0	\triangle	\triangle			0							\triangle				\triangle														
		INC <	Incremental radius-specified circular interpolation less than CCW 180°	\triangle	\bigcirc	O	O	\triangle	\triangle			0							\triangle				\triangle														
		INC C	Incremental radius-specified circular interpolation CCW 180° or more	\triangle	0	O	0	\triangle	\triangle			\bigcirc							\triangle				\triangle														
		ABS .	Absolute central point-specified circular interpolation CW	\triangle	0	O	0	\triangle	\triangle				\bigcirc						\triangle				\triangle														
		ABS	Absolute central point-specified circular interpolation CCW	\triangle	\bigcirc	\bigcirc	0	\triangle	\triangle				0						\triangle				\triangle														
		INC	Incremental central pointspecified circular interpolation CW	\triangle	0	\bigcirc	\bigcirc	\triangle	\triangle				\bigcirc						\triangle				\triangle					7 to 22									
		INC 4	Incremental central point- specified circular interpolation CCW	\triangle	0	0	0	\triangle	\triangle				0						\triangle				\triangle														
\bigcirc : Item which must be set, \triangle : Item which is set when required *1 Only when reference axis speed is specified. *2 (B) indicates a bit device.																																					

Table 7.2 Servo Instruction List (Continued)

은000000.000	Instruction Symbol	Processing	Positioning Data																											
			Common						Circular				OSC		*1	Parameter block								Others						
				$\frac{., n}{x}$			$\begin{array}{\|l\|} \hline 8 \\ \hline 0 \\ \hline \\ \hline \end{array}$							$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\rightharpoonup}{\mathbf{0}} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \hline \end{aligned}$											0 2 0 0 0 0 0 0 0		$\begin{array}{\|l\|l} \frac{t}{c} \\ \stackrel{y}{0} \end{array}$	$\frac{\circ}{3}$		
		Virtual enable	\bigcirc	0	00	00	0		00	0	0	O			0	O	-	O	O			O	O	\bigcirc	O	0		0	0	
		Number of steps	1	1	1	11	1	1	1	1	1	11	1	1	$1{ }^{1} 1$	12	1	1	1	1	1	1	1	1	1	2	1	21	2	
		Number of indirect words	1	-	22	21	1	1	2	2	21	12	2	2	1	1	1	1	1	1	1	2	1	${ }_{18}$		2		1(B)	B	
$\begin{array}{\|l\|l\|} \hline 0 & \frac{n}{x} \\ \hline 0 & \underset{\sim}{x} \\ \hline \end{array}$	FEED-1	1-axis fixed-pitch feed start	\triangle	\bigcirc	00	$\bigcirc \triangle$	\triangle									\triangle	\triangle	\triangle	\triangle	$\triangle \triangle$	$\Delta \triangle$		\triangle			\triangle				4 to 17
	FEED-2	2-axis linear interpolation fixed-pitch feed start	\triangle	\bigcirc	00	$\bigcirc \triangle$	\triangle									$\triangle \triangle$	\triangle	\triangle	\triangle	$\triangle \triangle$	$\triangle \triangle$		\triangle			\triangle				5 to 19
	FEED-3	3-axis linear interpolation fixed-pitch feed start	\triangle	\bigcirc	0	$\bigcirc \triangle$	\triangle									$\triangle \triangle$	\triangle	\triangle	\triangle	$\triangle \triangle$	$\Delta \triangle$		\triangle			\triangle				7 to 21
	VF	Speed control (I) forward rotation start	\triangle	\bigcirc		0	\triangle									\triangle	\triangle	\triangle			$\Delta \triangle$		\triangle			\triangle				
	VR	Speed control (I) reverse rotation start	\triangle	\bigcirc		0	\triangle									\triangle	$\Delta \triangle$	\triangle			$\Delta \triangle$		\triangle			\triangle				
	VVF	Speed control (II) forward rotation start	\triangle	0		0	\triangle	\triangle								\triangle	$\triangle \triangle$	\triangle		$\triangle \triangle$	$\Delta \triangle$		\triangle			\triangle				
	VVR	Speed control (II) reverse rotation start	\triangle	\bigcirc		0	\triangle	\triangle								\triangle	\triangle	\triangle	\triangle	$\triangle \triangle$	$\Delta \triangle$		\triangle			\triangle				
	VPF	Speed-position control forward rotation start	\triangle	0	00	$\bigcirc \triangle$	\triangle	\triangle								\triangle	$\Delta \triangle$	$\triangle \triangle$	\triangle	$\triangle \triangle$	$\Delta \triangle$		\triangle			\triangle				
	VPR	Speed-position control reverse rotation start	\triangle	\bigcirc	00	$\bigcirc \triangle$	\triangle	\triangle								\triangle	$\triangle \triangle$	\triangle	\triangle	$\triangle \triangle$	$\Delta \triangle$		\triangle			\triangle				4 to 18
	VPSTART	Speed-position control restart		\bigcirc																						\triangle				2 to 4
	VSTART	Speed switching control start	\triangle													$\triangle \triangle$	\triangle	\triangle	\triangle	$\triangle \triangle$	$\triangle \triangle$		\triangle			\triangle				1 to 13
	VEND	Speed switching control end																												1
	ABS-1	Speed switching control end point address		\bigcirc	00	$\bigcirc \triangle$	\triangle	\triangle																		\triangle				4 to 9
	ABS-2			\bigcirc	00	$\bigcirc \triangle$	\triangle	\triangle																		\triangle				5 to 10
	ABS-3			\bigcirc	00	$\bigcirc \triangle$	\triangle	\triangle																		\triangle				7 to 12
	INC-1	Travel up to speed switching control end point		\bigcirc	00	$\bigcirc \triangle$	\triangle	\triangle																		\triangle				4 to 9
	INC-2			\bigcirc	00	$\bigcirc \triangle$	\triangle	\triangle																		\triangle				5 to 10
	INC-3			\bigcirc	00	$\bigcirc \triangle$	\triangle	\triangle																		\triangle				7 to 12
	VABS	Speed switching point absolute designation			$\bigcirc 0$	O	\triangle	\triangle																						4 to
	VINC	Speed switching point incremental designation			00	O	\triangle	\triangle																						4 to 6
	PFSTART	Position follow-up control start	\triangle	0	0	\bigcirc	\triangle										$\Delta \triangle$	\triangle			$\triangle \triangle$		\triangle			\triangle				4 to 16
	CPSTART1	1-axis constant-speed control start	\triangle	0		0										\triangle	$\triangle \triangle$	\triangle	\triangle	\triangle	$\triangle \triangle$		\triangle			\triangle			\triangle	3 to 15
	CPSTART2	2-axis constant-speed control start	\triangle	0		0										$\triangle \triangle$	$\triangle \triangle$	\triangle	\triangle	\triangle	$\triangle \triangle$	\triangle	\triangle			\triangle			\triangle	3 to 17
	CPSTART3	3-axis constant-speed control start	\triangle	0		\bigcirc										$\triangle \triangle$	\triangle	\triangle	\triangle	\triangle	$\triangle \triangle$		\triangle			\triangle			\triangle	
	CPSTART4	4-axis constant-speed control start	\triangle	0		0										\triangle	\triangle	\triangle	\triangle	$\triangle \triangle$	$\triangle \triangle$		\triangle			\triangle			\triangle	to 1

O: Item which must be set, \triangle : Item which is set when required
*1 Only when reference axis speed is specified.
*2 (B) indicates a bit device.

Table 7.2 Servo Instruction List (Continued)

\bigcirc : Item which must be set, \triangle : Item which is set when required
*1 Only when reference axis speed is specified.
*2 (B) indicates a bit device.

7．2 Servo Motor／Virtual Servo Motor Shaft Current Value Change

In the real mode，the current value of the specified axis is changed．
In the virtual mode，the current value of the specified virtual servo motor shaft is changed．

Servo Instruction	Positioning Method	Number of Control Axes	Items Set on Peripheral Device																					
			Common							Circular			Parameter block									Others		
				$\frac{.0}{x}$		잉 0 0 0 0 0 0 0 0 0 0		$\begin{array}{\|l} \hline 0 ⿴ 囗 ⿰ ⿺ 乚 一 匕 \\ \hline 0 \\ \sum \\ \hline \end{array}$														$\begin{aligned} & \overline{0} \\ & \text { © } \\ & \text { © } \end{aligned}$	$$	
CHGA－C	Absolute	1		\bigcirc	\bigcirc																			Disable
																	Ite Ite	$\begin{aligned} & \mathrm{m} w h \\ & \mathrm{~m} w h \end{aligned}$	hich hich	mus is s	st b et w	e se vhen	req	ired

［Controls］
Control using CHGA instruction
（1）Executing the CHGA instruction changes the current value in the following procedure．
（a）The start acceptance flag（M2001 to M2008／M2001 to M2032） corresponding to the specified axis is turned ON．
（b）The current value of the specified axis is changed to the specified address．
（c）Start acceptance is turned OFF on completion of the current value change．
（2）In the real mode，the current value of the specified axis is changed．
（3）In the virtual mode，the current value of the specified virtual servo motor shaft is changed．
（4）The axis number used can be set within the following range．

A172SHCPUN	A173UHCPU（－S1）／				
A273UHCPU－S3（32－axis feature）		$	$	Axis 1 to axis 32	
:---:	:---:				
Axis 1 to axis 8					

［Program example］
A program for exercising current value change control in the real mode will be described under the following conditions．
（1）System configuration
The current value change control of axis 2 is performed．

(2) In the real mode, the current value of the specified axis is changed.
(a) The current value change control conditions are indicated below.

Item	Setting
Servo program number	No.10
Control axis	Axis 2
New address	50

(3) Operation timing

(4) The axis number used can be set within the following range.

POINT

(1) Current value changing instructions

- When PLC ready (M2000) or PCPU ready (M9074) is OFF, a minor error 100 occurs and a current value change is not made.
- This change is made only during a stop. If a current value change is made while the specified axis is starting, a minor error 101 (start acceptance signal of the corresponding axis is ON) occurs and the current value change is not made.
- If the servo of the corresponding axis is not READY, a major error 1004 occurs and the current value change is not made.
- If the corresponding axis is in a servo error, a major error 1005 occurs and the current value change is not made.

For SV22

- Set the virtual servo motor shaft's current value change program within the virtual mode program number range set in "program mode assignment".
- Set the servo motor (output) shaft's current value change program within the real mode program number range.
- If a virtual servo motor shaft current value change is executed in the real mode, a servo program error 903 occurs and the current value change is not made.
- If a servo motor (output) shaft current value change is executed in the virtual mode, a servo program error 904 occurs and the current value change is not made.
- If a current value change is made during mode changing, a servo program error 907 (real \rightarrow virtual changing) or 908 (virtual \rightarrow real switching) occurs and the current value change is not made.
7.3 Synchronous Encoder Shaft Current Value Change Control (SV22 Only)

The current value of the synchronous encoder shaft specified in the virtual mode is changed.

Servo Instruction	Positioning Method	Number of Control Axes	Items Set on Peripheral Device																					
			Common							Circular			Parameter block									Others		
				$\frac{.0}{x}$				$\begin{aligned} & \hline \frac{0}{\circ} \\ & 0 \\ & \mathrm{O} \\ & \Sigma \end{aligned}$														$\begin{aligned} & \hline \mathbf{0} \\ & \underset{\widetilde{N}}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{士}{\pi} \\ & \stackrel{\pi}{0} \end{aligned}$	
CHGA-E	Absolute	1		\bigcirc	\bigcirc																			Disable
																	: Ite : Ite	$\begin{aligned} & \mathrm{m} w h \\ & \mathrm{~m} \text { wh } \end{aligned}$	which which	mu is s	ust be set w	e s he	req	uired

[Controls]

Control using CHGA-E instruction

(1) Executing the CHGA-E instruction changes the current value of the synchronous encoder shaft in the following procedure.
(a) The synchronous encoder shaft current value changing flag (M2031/M2101 to M2112) corresponding to the specified synchronous encoder shaft is turned ON.
(b) The current value of the specified synchronous encoder shaft is changed to the specified address.
(c) The synchronous encoder shaft current value changing flag is turned OFF on completion of the current value change.
(2) The axis number used can be set within the following range.

A172SHCPUN	A173UHCPU(-S1)	A273UHCPU-S3 (32-axes feature)
Axis 1	Axis 1 to axis 4	Axis 1 to axis 12

[Program example]
A program for exercising the current value change control of the synchronous encoder shaft will be described under the following conditions.
(1) System configuration

The current value change control of the synchronous encoder P1 axis is performed.

(2) Current value change control conditions
(a) The current value change control conditions are indicated below.

Item	Setting
Servo program number	No.10
Control axis.	1
New address	Indirect designation using D10, D11

(3) Operation timing

(4) Servo program

POINT

(1) Synchronous encoder current value changing instructions

- The current value change of a synchronous encoder is executed if operation is being performed in the virtual mode (during pulse input from the synchronous encoder).
When the current value is changed, the feed current value of the synchronous encoder continues from the new value.
- The current value change of the synchronous encoder does not affect the current value of the output module.
- Set the synchronous encoder shaft's current value change program within the virtual mode program number range set in "program mode assignment".
- When PLC ready (M2000) or PCPU ready (M9074) is OFF, a minor error 100 occurs and a current value change is not made.
- If a synchronous encoder current value change is executed in the real mode, a servo program error 903 or 905 occurs and the current value change is not made. (903 when the current value change servo program is set to within the virtual mode program number range, or 905 when it is set to within the real mode program number range.)
- If a current value change is made during mode changing, a servo program error 907 (real \rightarrow virtual changing) or 908 (virtual \rightarrow real switching) occurs and the current value change is not made.

7. MOTION CONTROL PROGRAMS

7.4 Cam Shaft Within-One-Revolution Current Value Change Control (SV22 Only)

Servo Instruction	Positioning Method	Number of Control Axes	Items Set on Peripheral Device																					
			Common							Circular			Parameter block									Others		
						O 0 0 0 0 0 0 0 E 0 0 0		$\begin{array}{\|l} \hline 0 \\ \hline 0 \\ 0 \\ \Sigma \\ \Sigma \end{array}$				츠 을 쥰 ㅎ U	를 0 0 0 0 0									$\begin{aligned} & \overline{\mathbf{0}} \\ & \underset{\widetilde{N}}{0} \\ & 0 \end{aligned}$		
CHGA-C	Absolute	1		\bigcirc	\bigcirc																			Disable
																			hich which	mu	st	e se		ired

[Controls]

Control using CHGA-C instruction
(1) Executing the CHGA-C instruction changes the within-one-revolution current value of the specified cam shaft to the specified address.
(2) The cam shaft may be starting.
(3) The axis number used can be set within the following range.

A172SHCPUN	A173UHCPU(-S1)/ A273UHCPU-S3(32-axes feature)
Axis 1 to axis 8	Axis 1 to axis 32

[Program example]
A program for exercising the within-one-revolution current value change control of the cam shaft will be described under the following conditions.
(1) Current value change control conditions
(a) The current value change control conditions are indicated below.

Item	Setting
Servo program number	No.10
Output shaft number	2
New address	0

(2) Servo program

POINT

(1) Cam shaft within-one-revolution current value changing instructions

- If a new within-one-revolution current value is outside the range 0 to (onerevolution pulse count -1), a minor error 6120 occurs and a current value change is not made.
- Set the cam shaft within-one-revolution current value change program within the virtual mode program number range set in "program mode assignment".
- When PLC ready (M2000) or PCPU ready (M9074) is OFF, a minor error 100 occurs and a current value change is not made.
- If a cam shaft within-one-revolution current value change is executed in the real mode, a servo program error 903 or 905 occurs and the current value change is not made. (903 when the current value change servo program is set to within the virtual mode program number range, or 905 when it is set to within the real mode program number range.)
- If a current value change is made during mode changing, a servo program error 907 (real \rightarrow virtual changing) or 908 (virtual \rightarrow real switching) occurs and the current value change is not made.

8. MOTION DEVICES

The motion registers (\#0 to \#8191) and coasting timer (FT) are available as motion CPU (PCPU)-dedicated devices.
They can be used in operation control (F/FS) programs or transition (G) programs. They cannot be accessed directly from the PLC. When using them on the PLC side, assign them to the PLC devices.
8.1 Motion Registers (\#0 to \#8191)

Motion Device	Item	A172SHCPUN/A173UHCPU(-S1)/A273UHCPU-S3
Motion register (\#)	Number of points	8192 points (\#0 to \#8191)
	Data size	16 bits/point
	Latch	Latched with the exception of SFC-dedicated devices. (All points are cleared by latch clear operation.)
	Usable tasks	Normal, event, NMI
	Access	Read and write enabled in whole range

(1) Motion register list
(a) Common to all Operating Systems.

Device Number	Application	Remarks		
$\# 0$	User devices (8000 points)	Cleared by latch clear.		
\#8000		Cleared at power-on or key-reset only. (66 points)		
$\# 8066$	SFC dedicated devices			
(192 points)			\quad	Not cleared
:---				
\#8191				

POINT

The motion registers (\#) cannot be set as indirectly specified devices of mechanical system programs.
(2) SFC-dedicated devices (\#8000 to \#8191)

The SFC-dedicated devices are indicated below.
The device's refresh cycle is indicated when the signal direction is "status", or its import cycle when the signal direction is "command".

Device Number	Signal Name		Signal Direction		Refresh Cycle	Import Cycle
			Status	Command		
\#8000	Seventh error information in past (Oldest error information)	SFC error history (8 errors) (64 points)	\bigcirc	-	At error occurrence	-
\#8008	Sixth error information in past					
\#8016	Fifth error information in past					
\#8024	Fourth error information in past					
\#8032	Third error information in past					
\#8040	Second error information in past					
\#8048	First error information in past					
\#8056	Latest error information					
\#8064						
	User unusable (128 points)					
\#8191						

(3) SFC error history devices

The error information which occurred after power-on of the CPU is stored as a history of up to eight past errors. The latest error is stored in \#8056 to \#8063. All errors, including the SFC control errors and the conventional minor, major, servo, servo program and mode changing errors, have been integrated into this history.
At error occurrence, the "SFC error detection signal M2039" is also set. The error information is as indicated below.

NO.	Signal Name		Description	
			SFC control errors	Conventional errors
+0	Error SFC program number		0 to 255 : SFC program number in error -1 : Independent of SFC program	-1
1	Error ty			3: Minor/major error (Output module in real mode/virtual mode (SV22 only)) 4: Minor/major error (virtual servo motor shaft) (SV22 only) 5: Minor/major error (synchronous encoder shaft) (SV22 only) 6: Servo error 7: Servo program error 8: Mode change error (SV22 only) 9: Manual pulse generator axis setting error 10: Test mode request error 11: PCPU WDT error 12: Personal computer link communication error
2	Error p numbe	gram	0 to 4095 $:$ F/FS, G, K program number 0 to 255 : GSUB program number -1 : Independent of F/FS, G, K, GSUB	
3	Error b numbe list line numbe number	lock r/SFC r/axis	0 to 8191 : F/FS or G program's block number (line number) when error type is "1" or "2" 0 to 8188 : SFC list line number when error type is "-2" -1 : Independent of block when error type is "-1" or error type is "1" or "2"	1 to 32 : Corresponding axis number when error type is any of "3" to "6" -1 : Others
4	Error		16000 and later (Refer to "15. Error List".)	- Conventional error code (less than 16000) when error type is any of " 3 " to "6" - Error code stored in D9190 when error type is "7" - Error code stored in D9193 (A273UH-S3)/D9195 (A172SH) when error type is " 8 " - -1 when error type is "9" or "10" - Error code stored in D9184 when error type is "11" - Error code stored in D9196 when error type is "12"
5	Error occurr ence time	Year /month	The PLC clock data (D9025, D9026, D9027) are set. (BCD code, year in its lower 2 digits)	
6		Day/ hour		
7		Minute/ second		

(4) SFC error detection signal (M2039)
(Refresh cycle UH: 10 ms , SH: PLC scan time)
The SFC error detection signal (M2039) turns ON when any of the errors detected by the motion CPU occurs.
At error occurrence, data are set to the error devices in the following procedure.
(a) The error code is set to the corresponding axis or error devices.
(b) The error detection signal of the corresponding axis or error is turned ON.
(c) Error information is set to the above "SFC error history devices (\#8000 to \#8063)".
(d) The SFC error detection signal (M2039) is turned ON.

In the user program, when the "SFC error detection signal (M2039)" turns ON, read the error history, and then reset the "SFC error detection signal (M2039)". After that, at occurrence of a new error, "SFC error detection signal (M2039)" turns ON again.

POINT

- Resetting the "SFC error detection signal (M2039)" will not reset (clear to zero) the "SFC error history devices (\#8000 to \#8063)".
After power-on, they always manage the error history continuously.
- Set the clock data and clock data read request (M9028) in the user program.

8.2 Coasting Timer (FT)

Motion Device	Item	A273UHCPU-S3/A172SHCPUN
Coasting timer (FT)	Number of points	1 point (FT)
	Data size	32 bits/point (-2147483648 to 2147483647)
	Latch	No latch. Cleared to zero at power-on or key-reset.
	Usable tasks	Normal, event, NMI
	Access	Read only enabled
	Timer specifications	$888 \mu s$ timer (Current value (FT) is incremented by 1 per $888 \mu \mathrm{~s})$.

9. TASK OPERATIONS

9.1 Task Definitions

When to execute SFC program processing can be set only once in the program parameter (refer to Chapter 11 SFC Parameters) per program.
These processing timing brackets are called tasks.
Roughly classified, there are the following three different tasks.

Task Type	Description
Normal task	Executed in motion main cycle (free time).
Event task	1. Executed in fixed cycle (1.7ms, 3.5ms, $7.1 \mathrm{~ms}, 14.2 \mathrm{~ms})$. 2. Executed when the input set to the event task factor among external interrupts (16 points of AI61) turns ON.
3. Executed by an interrupt from the PLC.	

(1) Normal task
[Operations]
An SFC program is run in the main cycle (free time) of the motion side CPU (PCPU) processing.
The processing is outlined as follows.
Normal task execution cycle

[Points]
(a) The SFC program which includes motion control steps should be set to a normal task.
(b) During execution of an event or NMI task, the execution of the normal task is suspended.
Note that since the normal task allows the event task disable instruction (DI) to be described in an operation control step, the event task can be disabled in the area enclosed by the event task disable instruction (DI) and event task enable instruction (EI).
(2) Event task
[Operations]
An event task runs an SFC program at occurrence of an event.
There are the following events.
(a) Fixed cycle

An SFC program is run periodically in any of $1.7 \mathrm{~ms}, 3.5 \mathrm{~ms}, 7.1 \mathrm{~ms}$ and 14.2 ms cycles.
(b) External interrupt (16 points of IO to I15)

Among 16 points of the AI61 (16-point interrupt module) loaded in the motion slot, an SFC program is run when the input set for an event task turns ON.
(c) PLC interrupt

An SFC program is run when the ITP instruction is executed in the sequence program.
[Points]
(a) You can set plural events to one SFC program. However, you cannot set plural fixed cycles.
(b) Multiple SFC programs can be run by one event.
(c) Motion control steps cannot be executed during the event task.
(d) The event task cannot be executed when it is disabled by the normal task. The event that occurred during event task disable is executed the moment the event task is enabled.
[Errors]
An attempt to execute a motion control step in an SFC program set to the event task will result in an SFC program error 16113 and stop the SFC program that is running.
(3) NMI task
[Operations]
An SFC program is run as soon as the input set to the NMI task factor among the external interrupts (16 points of the Al61) turns ON.

[Points]

(a) Among the normal, event and NMI tasks, the NMI task has the highest priority.
(b) If the event task is disabled (DI) by the normal task, the interruption of the NMI task is executed, without being masked.

[Errors]

During an NMI task, a motion control step cannot be executed.
Presence of a motion control step during an NMI task will result in an SFC program error 16113 and stop the SFC program which is running.

9.2 Task Execution Status

The following example gives how the SFC programs run by multiple tasks are executed.

When there are programs which are run by the NMI task, 3.5 ms fixed-cycle even task and normal task,
(1) The 3.5 ms fixed-cycle event task run its program at intervals of 3.5 ms ;
(2) The NMI task runs its program with the highest priority when an NMI interrupt is input; and
(3) The normal task runs its program at free time. as shown above.
[Points]
A single SFC program can be run partially by another task by setting the area to be executed by another task as a subroutine and setting a subroutine running task as another task.

Example) No. 0 Main SFC program Normal task

No. 1 Subroutine
Event task (3.5 ms cycle)

10. PROGRAMMING INSTRUCTIONS

10.1 Task Definitions

Note the following points when SET/RST/DOUT of the bit devices which are enabled for SET/RST/DOUT from a sequence program, e.g. M devices, is executed in an SFC program.
(1) The bit devices which are SET/RST/DOUT in an SFC program should not be SET/RST/OUT in a sequence program.
(2) Reversely, the bit devices which are SET/RST/OUT in a sequence program should not be SET/RST/DOUT in an SFC program.
(3) The above exclusive control should be exercised for each bit device in increments of consecutive 16 points, starting with the device number which begins with a multiple of 16 .
[Points]
(1) The user should predetermine how to use bit devices, e.g. M112 to M127: SET/RST executed on the SFC program side M128 to M143: SET/RST executed on the sequence program side
(2) Care should be taken since the first command device of each axis does not begin with a multiple of 16 .

10.2 SET/RST Response Delays of Motion-Dedicated Bit Devices

When command devices among the following motion-dedicated bit devices are SET/RST in an SFC program, there will be a delay in refresh time as indicated below.
There will also be a refresh delay when devices are SET/RST in an SFC program and their results are used in the SFC program.

	10 ms	END $^{\text {(Note) }}$
A172SHCPUN	M2000 to M2015	M2016 to M2047
A173UHCPU(-S1) A273UHCPU-S3(32-axes feature)	M2000 to M2047	M2048 to M2095

(Note): END indicates a "sequence program scan time".

10.3 Cancel Start

When a cancel start has been set in the setting items of the servo program which was started at the motion control step of an SFC program, the cancel of the running servo program is valid but the servo program specified to start after a cancel is ignored, without being started.
The following example shows an SFC program which exercises control equivalent to a cancel start.

10.4 Indirect Designation using Motion Devices

The motion registers \#0 to \#8191 cannot be used to make indirect designation in servo and mechanical system programs.
When using the motion register values in servo or mechanical system programs, assign them to PLC devices.
10.5 Sequence Programs
(1) You cannot use the SVST, CHGV, CHGA and CHGT (DSFRP and DSFLP also included when the A172SHCPUN is used) motion-dedicated instructions in sequence programs.
Doing so will cause an error (INSTRUCT CODE ERR.) in the PLC.
(2) When reading and using 2-word monitor data, such as a feed current value, or 2-word data written with an SFC program, always import it into a user device once using the "DMOV (P) " instruction, and perform magnitude comparison or similar operation using the device that imported the data.

11. SFC PARAMETERS

Two different SFC parameters are available: "task parameters" designed to control the tasks (normal task, event task, NMI task) and "program parameters" to be set per SFC program.
Their details will be explained below.

11.1 Task Parameters

No.	Item		Setting Item	Initial Value	Remarks
1	Number of consecutive transitions	Normal task	1 to 30	These parameters are imported when PLC ready (M2000) turns from OFF to ON and used for control thereafter. When setting/changing the values of these parameters, turn PLC ready (M2000) OFF.	
2	Interrupt setting	Set whether the event task or NMI task is used for external interrupt inputs (IO to I15).	Event task		

(1) Number of consecutive transitions

[Description]

With "execution of active step \rightarrow judgment of next transition condition \rightarrow transition processing performed when condition enables (transition of active step)" defined as a single basic operation of SFC program running control in the execution cycle of the corresponding task, this operation is performed for the number of active steps to terminate processing once.
The same operation is then repeated in the next cycle to perform processing. In this case, the transition destination step is executed in the next cycle when the transition condition enables.

Consecutive transition control indicates that transition destination steps are executed one after another in the same one execution cycle when their transition conditions have enabled (single basic operation is performed consecutively).
Set the number of consecutive transitions in this case.
Control exercised is common to the SFC programs run by normal tasks.

POINT

Set the number of consecutive transitions to each of the SFC programs run by event and NMI tasks.

[Errors]

These parameters are imported and checked when PLC ready (M2000) turns from OFF to ON.
When the value that was set is outside the setting range, the following SFC error is set and the initial value is used to exercise control.

Error Code	Error Factor		Error Processing	Corrective Action			
	Name	Definition		The normal task's consecutive transition count of the SFC program run by the normal task is outside the range 1 to 30.			The initial value of 3 is used
:---							
for control.	\quad	Turn PLC ready (M2000)					
:---							
OFF, make correction to set							
the value of within the range,							
and write it to the CPU.							

(2) Interrupt setting
[Description]
Set whether 16 interrupt input points (10 to I15) of the Al61 interrupt input module loaded in the motion slot are used as NMI or event task inputs.
Setting can be made freely per point.
All points default to event tasks.
[Errors]
None.

11.2 Program Parameters

Set the following parameters per SFC program.

(1) Start setting

[Description]

The following control is governed by "automatically started or not" setting.

- Program run by normal task

No.	Item	When "automatically started"	When "not automatically started"
1	Start control	In the main cycle after PLC ready (M2000) has turned from OFF to ON, the program is run from the initial (first) step in accordance with the normal task's consecutive transition count.	The program is started by the SFC start instruction (SFCS) from the PLC or by a subroutine call/start (GSUB) made from within the SFC program. - When started by the SFCS instruction In the main cycle after execution of the SFCS instruction, the program is run from the initial (first) step in accordance with the normal task's consecutive transition count. - When subroutine started In the (next) main cycle after execution of GSUB, the program is run from the first step in accordance with the normal task's consecutive transition count. - When subroutine called The program is run in the same cycle from the first step.
		After that, in the motion main cycle, the program is run continuously by the number of consecutive transitions of the normal task. (The settings of "executed task" and "number of consecutive transitions" of the subroutine called program are invalid. The normal task is used for control.)	
2	End control	Ends its own program. The program is started when it is started again by the subroutine call/start (GSUB) made from within the SF	start instruction (SFCS) from the PLC or by a program.

- Program run by event task

No.	Item	When "automatically started"	When "not automatically started"
1	Start control	At occurrence of a valid event after PLC ready (M2000) has turned from OFF to ON, the program is run from the initial (first) step in accordance with the number of consecutive transitions of the corresponding program.	The program is started by the SFC start instruction (SFCS) from the PLC or by a subroutine call/start (GSUB) made from within the SFC program. - When started by the SFCS instruction At occurrence of a valid event after execution of the SFCS instruction, the program is run from the initial (first) step in accordance with the number of consecutive transitions of the corresponding program. - When subroutine started At occurrence of a valid event after execution of GSUB, the program is run from the first step in accordance with the number of consecutive transitions of the corresponding program. - When subroutine called The program is run immediately from the first step.
		After that, at occurrence of a valid event, the progra transitions of the corresponding program. (The subroutine called program is controlled in accordan transitions" of the call source program.)	am is run continuously by the number of consecutive ce with the "executed task" and "number of consecutive
2	End control	As specified for END operation.	

- Program run by NMI task

No.	Item	When "automatically started"	When "not automatically started"
1	Start control	At occurrence of a valid event after PLC ready (M2000) has turned from OFF to ON, the program is run from the initial (first) step in accordance with the number of consecutive transitions of the corresponding program.	The program is started by the SFC start instruction (SFCS) from the PLC or by a subroutine call/start (GSUB) made from within the SFC program. - When started by the SFCS instruction At occurrence of a valid event after execution of the SFCS instruction, the program is run from the initial (first) step in accordance with the number of consecutive transitions of the corresponding program. - When subroutine started At occurrence of a valid event after execution of GSUB, the program is run from the first step in accordance with the number of consecutive transitions of the corresponding program. - When subroutine called The program is run immediately from the first step.

After that, at occurrence of a valid event, the program is run continuously by the number of consecutive transitions of the corresponding program.
(The subroutine called program is controlled in accordance with the "executed task" and "number of consecutive transitions" of the call source program.)

2 As specified for END operation.

[Errors]

None.

POINT

When you want to automatically restart the program run by the normal task from the initial step at end of a single cycle operation, write the program so that it is not ended by END but it returns to the starting step by a jump.

(2) Executed task

[Description]
Set the timing (task) to run a program.
Specify whether the program will be run by only one of the "normal task (main cycle), event task (fixed cycle, external interrupt, SCPU interrupt) and NMI task (external interrupt)".

When you have set the event task, you can set multiple events out of the "fixed cycle, external interrupt (for event task) and SCPU interrupt".
Note that multiple fixed cycles cannot be set to a single SFC program.
Example) Interrupt setting: Inputs for event task I6, I7, I8, I9, I10, I11, I12, I13, I14 and I15
SFC program No. 10 - event: Fixed cycle (3.5ms)
SFC program No. 20 - event:
Fixed cycle (1.7ms) + external interrupt (I6)
SFC program No. 30 - event:
External interrupts (17, I15) + SCPU interrupt
When you have set the NMI task, you can set multiple interrupt inputs out of the external interrupts (for NMI task).

Example) Interrupt setting: Inputs for NMI task IO, I1, I2, I3, I4, I5
SFC program No. 10 - NMI: 10
SFC program No. $20-\mathrm{NMI}: 11+\mathrm{I} 2$
SFC program No. 30 - NMI: 15

[Errors]

This parameter is imported when PLC ready (M2000) turns from OFF to ON, and is checked at an SFC program start (automatic start, start from PLC or subroutine start).
When the value is unauthorized, either of the following SFC errors is set and the initial value is used for control.

Error Code	Error Factor		Error Processing	Corrective Action		
	Name	Definition			The initial value (normal task)	Turn PLC ready (M2000) OFF,
:---						
make correction, and write a						
mased for control.						
correct value to the CPU.						

POINT

(1) Since the executed task setting can be made per SFC program number, multiple programs need not be written for single control (machine operation) to divide execution timing-based processings.
For example, this can be achieved easily by subroutine starting the areas to be run in fixed cycle and to be run by external interrupt partially in an SFC program run by the normal task.
(2) The executed task of the subroutine called program is controlled like that of the call source program.
Hence, this setting is invalid but it is recommended to make the same setting as the call source program.
(3) Number of consecutive transitions

[Description]

Set the number of consecutive transitions to each program run by the event or NMI task.
Refer to Section 11.1 for the "number of consecutive transitions".

[Errors]

This parameter is imported when PLC ready (M2000) turns from OFF to ON, and is checked at an SFC program start (automatic start, start from PLC or subroutine start).
When the value is unauthorized, either of the following SFC errors is set and the initial value is used for control.

Error Code	Error Factor		Error Processing	Corrective Action
	Name	Definition		
17002	NMI task consecutive transition count error	NMI task consecutive transition count error	The initial value of 1 is used	Turn PLC ready (M2000) OFF, make correction to set the value within the range, and write it to the CPU.

POINT

The number of consecutive transitions of the subroutine called program is the same as that of the call source program.
Hence, this setting is invalid but it is recommended to make the same setting as the call source program.
(4) END operation
[Description]
Set the operation to be performed at execution of the END step to the program run by the event or NMI task.
This varies the specifications for the following items.

NO.	Item	When "Ended"	When "Continued"
1	Control at END execution	Ends its own program.	Ends the run of its own program with the event/interrupt made this time.
2	Restart after END execution	Started by the SFC start instruction (SFCS) from the PLC again or started by a subroutine call/start (GSUB) made from within the SFC program.	Restarted at occurrence of the next valid event/interrupt, and run from the initial (first) step in accordance with the number of consecutive transitions of the corresponding program. Thereafter, at occurrence of a valid event/interrupt, the program is controlled in accordance with the number of consecutive transitions of the corresponding program.
3	Restart after end by clear step CLR	Started by the SFC start instruction (SFCS) from the PLC again or started by a subroutine call/start (GSUB) made from within the SFC program.	

POINT	
The END operation of the subroutine called program is controlled as an "end".	

- The following operation example assumes that the END operation is "continued".
Program parameters
- Automatically started
- Executed task = event 3.5 ms
- Number of consecutive transitions = 2
- END operation "Continued"

12. HOW TO RUN SFC PROGRAM

12.1 How to Start SFC Program

An SFC program runs while PLC ready M2000 is ON.
An SFC program may be started by any of the following three methods.
(1) Automatic start
(2) Start from SFC program
(3) Start from PLC

Set the starting method in the program parameter per SFC program.
Refer to Chapter 11 SFC Parameters for parameter setting.

12.1.1 Automatic start

[Operations]
An automatic start is made by turning PLC ready M2000 ON.

12.1.2 Start from SFC program

[Operations]
A start is made by executing a subroutine call/start step in the SFC program.
For details of the subroutine call/start step, refer to Chapter 4 SFC Programs.
12.1.3 Start from PLC (Sequence instruction SFCS)

The SFC program can be started by executing the following instruction in the sequence program.

- SFC program start request instruction (SFCS)

	Usable Devices																								Index	Carry Flag	Error Flag	
	Bit devices							Bit devices									Const -ants		Point -ers		Level							
	X	Y	M	L	S	B	F	T	C	D	W	R	A 0	A 1	Z	V	K	H	P	1	N					$\begin{gathered} \mathrm{M} \\ 9012 \end{gathered}$	$\begin{gathered} \mathrm{M} \\ 9010 \end{gathered}$	$\begin{gathered} \mathrm{M} \\ 9011 \end{gathered}$
(D)																											\bigcirc	
N										\bigcirc	O	\bigcirc					\bigcirc	\bigcirc					13				O	O

Sequence program					
[Execution condition]					
		Settings		Settin	Range
	n	SFC program number to be started	SFC program number to be started		255
			When specified indirectly (1 word)	A172SHCPUN	$\begin{array}{\|c\|} \hline \mathrm{A} 173 \mathrm{UHCPU} \\ (-\mathrm{S} 1) \\ \text { /A273UHCPU-S3 } \\ \hline \end{array}$
				D0 to D1023 W0 to W3FF R0 to R8191	D0 to D8191 W0 to W1FFF R0 to R8191

[Controls]

A request to start the specified SFC program is given on the leading edge ($\mathrm{OFF} \rightarrow \mathrm{ON}$) of the SFCS instruction execution command in the sequence program. The SFC program to be started may be run by any of the normal task, event task and NMI task.
(1) This instruction is always valid in any of the real mode, virtual mode and mode changing status.

[Errors]
At occurrence of any of the following errors, an SFC error is set to the SFCdedicated devices "SFC error history devices (\#8000 to \#8039)" and SFC error detection M2039, and the SFC program is not started.
<SFC error history devices>

\#8056	Error SFC program number		Started SFC program number	M2039	SFC error detection signal	(ON)
\#8057	Error type		-1			
\#8058	Error program number		-1			
\#8059	Error block number		-1			
\#8060	Error code		* (indicated below)			
\#8061	Error occurrence time	Year/month	??			
\#8062		Day/hour	??			
\#8063		Minute/ second	??			

Error Code		Error Factor	Error Factor	Corrective Action
	Corrective Action	Definition		
16000	PLC ready OFF (SFCS)	At a start made by SFCS, PLC ready (M2000) or PCPU ready (M9074) is OFF.	The specified SFC program does not start.	Provide ON of PLC ready (M2000) and PCPU ready (M9074) as start interlocks.
16001	SFC program number error (SFCS)	At an SFC program start made by SFCS, the SFC program number specified is outside the range 0 to 255.		Check the SFC program number, and correct it to a correct sequence program.
16002	No SFC program (SFCS)	At an SFC program start made by SFCS, the specified SFC program does not exist.		Check the SFC program number, and correct it to a correct sequence program, or create an SFC program not yet created.
16003	Double start error (SFCS)	At an SFC program start made by SFCS, the same SFC program is already starting.		Double start should be managed on the user side. Provide the user's starting signal as a start interlock in the sequence program.

12.2 How to End SFC Program

[Operations]

(1) The SFC program is ended by executing END set in itself.
(2) The SFC program is stopped by turning OFF the PLC ready signal M2000.
(3) The program can be ended by the clear step.

For details of the clear step, refer to the section of the clear step in Chapter 4 SFC Programs.
[Points]
(1) Multiple ENDs can be set in a single SFC program.
12.3 Clear Step in the SFC Program

Executing the clear step set in the SFC program stops the run of the SFC program specified in the clear step.
12.4 How to Change from One SFC Program to Another

Use a subroutine start to stop the SFC program which is running and switch it to another SFC program.

SFC program changing example using subroutine start

12.5 How to Manage the Running Programs

There are no specific information that indicates which SFC program is running. Use a user program (SFC program/sequence program) to manage the running program.

12. HOW TO RUN SFC PROGRAM

12.6 SCPU to PCPU Interrupt Instruction (Sequence instruction ITP)

Executing the following instruction in a sequence program generates an interruption to the motion CPU.

- PCPU interrupt instruction (ITP)

	Usable Devices																								$\begin{aligned} & \stackrel{\rightharpoonup}{\oplus} \\ & \stackrel{0}{\omega} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$	Index	$\begin{aligned} & \text { Carry } \\ & \text { Flag } \end{aligned}$	Error Flag	
	Bit devices							Bit devices										Cons -tants		$\begin{gathered} \text { Point- } \\ \text { ers } \end{gathered}$		Level							
	X	Y	M	L	S	B			C	D	W		R	A	A	Z	V	K	H	P	1	N					$\begin{gathered} \mathrm{M} \\ 9012 \end{gathered}$	$\begin{gathered} \text { M } \\ 9010 \end{gathered}$	$\begin{gathered} \mathrm{M} \\ 9011 \end{gathered}$
(D)																								13					
N																													

[Controls]

An interruption to the motion CPU (PCPU) is generated on the leading edge ($\mathrm{OFF} \rightarrow \mathrm{ON}$) of the ITP instruction execution command in the sequence program. When an interruption is generated by the SCPU, the motion CPU processes the active step of the SFC program to be executed at a "PLC interrupt".
(1) This instruction is always valid in any of the real mode, virtual mode and mode changing status.

(2) When the motion side is in the DI (interrupt disable) status, event processing stands by until the El (interrupt enable) instruction is executed.
[Errors]
At occurrence of the following error, an SFC error is set to the SFC-dedicated devices "SFC error history devices (\#8000 to \#8039)" and SFC error detection M2039, and the SFC program's active step to be executed at a "PLC interrupt" is not processed.
<SFC error history devices>

\#8056	Error SFC program number		-1	M2039	SFC error detection signal	(ON)
\#8057	Error type		-1			
\#8058	Error program number		-1			
\#8059	Error block number		-1			
\#8060	Error code		* (indicated below)			
\#8061	Error occurrence time	Year/month	??			
\#8062		Day/hour	??			
\#8063		Minute/ second	??			

Error Code	Error Factor		Error Processing	Corrective Action		
	Name	Definition				ITP was executed with PLC
:---						
ready (M2000) or PCPU						
ready (M9074) OFF.	\quad	ITP				
:---		was executed with PLC				
:---						
ready (M2000) or PCPU						
ready (M9074) OFF.						

13. SFC PROGRAM CONTROLLING OPERATIONS

13. SFC PROGRAM CONTROLLING OPERATIONS

13.1 Operation Performed at CPU Power-Off or Key-Reset

When the CPU is powered off or a key reset operation is performed, SFC programs run as described below.
(1) When the CPU is powered off or a key reset operation is performed, SFC programs stop running.
(2) At CPU power-off or key-reset, the contents of the motion registers \#0 to \#7999 are held. Initialize them in SFC programs as required.
(3) After CPU power-on or key reset processing, SFC programs run as described below.

- The SFC programs set to start automatically are run from the beginning by turning PLC ready M2000 ON in the sequence program.
- The other SFC programs are also run from the beginning when started.
13.2 Operation Performed when CPU Is Put in RUN Mode

When the CPU is set to the RUN mode, the following operation is performed.
(1) When PLC ready M2000 is ON

- The SFC programs set to start automatically run from the initial step.
- The output states are governed by the PLC side "STOP \rightarrow RUN time output mode" parameter setting.
(2) When PLC ready M2000 is OFF
- The SFC programs do not run until M2000 is turned ON.
- The output states are governed by the PLC side "STOP \rightarrow RUN time output mode" parameter setting.
13.3 Operation Performed when CPU Is Switched from RUN to STOP
(1) When the CPU is placed in the STOP mode, SFC programs stop.
(2) When SFC programs are stopped in the STOP mode, all outputs turn OFF.
13.4 Operation Performed when CPU is set to PAUSE or STEP-RUN

When the CPU is set to PAUSE or STEP-RUN, SFC programs continue processing without stopping.

13. SFC PROGRAM CONTROLLING OPERATIONS

13.5 Operation Performed when PLC Ready (M2000) Turns OFF/ON

[M2000 OFF \rightarrow ON]
If there is no fault when PLC ready (M2000) turns from OFF to ON, the PCPU ready flag M9074 turns ON.
When this PCPU ready flag M9074 turns ON, SFC programs can be run.
[M2000 ON \rightarrow OFF]
When PLC ready (M2000) turns OFF, SFC programs stop running and the PCPU ready flag M9074 turns OFF.
Since outputs are held, turn OFF necessary outputs in the sequence program after the PCPU ready flag M9074 has turns OFF.

[Points]

(1) While the PCPU ready flag M9074 is ON, the outputs Y of the PBUS do not provide data to actual outputs if write is performed from the sequence program. However, while the PCPU ready flag M9074 is OFF, the outputs Y of the PBUS provide data to actual outputs when write is performed from the sequence program.

POINT
When the PLC ready signal M2000 turns OFF, SFC programs stop but
outputs Y in the SFC programs do not turn OFF.
Turn them OFF as required in the sequence program.

(2) SFC program run governed by RUN/STOP and M2000 ON/OFF

		PLC Ready M2000 Is ON	PLC Ready M2000 Is OFF
RUN	SFC programs	Run	SFC programs stop
	Outputs	Turn ON/OFF according to program	Outputs held
STOP	SFC programs	SFC programs stop	\leftarrow
	Outputs	All outputs turn OFF	\leftarrow
STOP \downarrow RUN	SFC programs	SFC programs set to start automatically restart from beginning	SFC programs remain stopped
	Outputs	As set in sequence parameter "STOP \rightarrow RUN time output mode"	As set in sequence parameter "STOP \rightarrow RUN time output mode"

Outputs are held if SFC programs stop due to error occurrence.
To turn OFF outputs at error occurrence, run the following SFC program.

At SCPU WDT ERROR occurrence, all SFC programs running stop and all outputs turn OFF.

14. USER FILES

This chapter provides a user file list and directory structure.
14.1 Projects

User files are managed on a "project" basis.
When you set a "project name", a "project name" folder is created as indicated on the next page, and under that, sub folders (SFC, GLIST, GCODE, FLIST, FCODE) classified by file types are created.
Also, under the SFC sub folders, initial files of the "project file (project name.prj)" and an editing folder (temp) are created.

POINT

(1) Set the "project name" on the project management screen.
(2) The "project name" is restricted to 256 characters in length.
(3) The "project path name" + "project name" are restricted to 256 characters in length.
((Example) "C:\Usr\......\project name\")

14.2 User File List

A user file list is indicated below.

* : Indicates the file (data) stored in CPU memory.

15. ERROR LISTS

Eight errors that occurred in the past during SFC control are stored into the "error history devices (\#8000 to \#8039)" of the motion registers.
The "error codes" in them indicate the following definitions.
The conventional minor errors, major errors, servo errors, servo program errors, mode change errors (SV22 only) and similar errors remain unchanged.

15.1 SFC Program Errors

Table 15.1 SFC Program Start Errors (16000 to 16099)

Error Code	Error Factor		Error Processing	Corrective Action

Table 15.2 SFC Interpreter Detection Errors (16100 to 16199)

Table 15.3 SFC Program Run Errors (16200 to 16299)

Error Code	Name	Error Factor	Definition	Error Processing

Table 15.4 Operation Control/Transition Execution Errors (16300 to 16599)

Error	Error Factor		Error Processing	Corrective Action
Code	Name	Definition		
16301	Event task enable (EI) execution error	Event task enable was executed in other than the normal task.	The block processing in execution is stopped and the next block is executed.	Event task enable may be executed in the normal task only. Correct the program.
16302	Event task disable (DI) execution error	Event task disable was executed in other than the normal task.		Event task disable may be executed in the normal task only. Correct the program.
16303	Block transfer (BMOV) execution error	The cam data of the cam No. specified at (D) or (S) is not yet registered to the motion controller. The resolution of the cam No. specified at (D) or (S) differs from the number of transferred words specified at (n). The PCPU memory address specified at (D) or (S) is outside the SRAM range. (S) to $(\mathrm{S})+(\mathrm{n}-1)$ is outside the device range. (D) to (D)+(n-1) is outside the device range. (n) is 0 or a negative number.		Correct the program so that cam data is that of the already registered cam No. Correct the program to match (n) with the cam resolution. Correct the program to specify the PCPU memory address with an even number. Change (n) so that the block transfer range is within the device range. Change (n) to a positive number.
16304	Time to wait (TIME) execution error	The device number which indirectly specifies (S) is illegal. The (S) data is outside the range 0 to 2147483647.		Correct the program so that the device number which indirectly specifies (S) is proper. Correct the program so that the (S) data is within the range 0 to 2147483647.
16308	Speed change request (CHGV) execution error	The specified axis number is outside the range.		Correct the program so that the specified axis number is within the
16309	Torque limit value change request (CHGT) execution error			range.
16316	Assignment (=) execution error	The (S) data is outside the range of the data type of (D). The device number which indirectly specifies (D) is illegal.		Correct the program so that the (S) data is within the range of the data type of (D). Correct the program so that the device number which indirectly specifies (D) is proper.
16320	Operation (/) execution error	The divisor is 0 .		Correct the program so that the
16321	Remainder (\%) execution error			divisor is other than 0.
16332	Device set (SET) execution error	The device number which indirectly specifies (D) is illegal.		Correct the program so that the device number which indirectly
16333	Device reset (RST) execution error	(D) is a device which is writedisabled.		specifies (D) is proper. Correct the program to set a write-
16334	Device set (SET=) execution error			enabled device at (D).
16335	Device reset (RST=) execution error			
16336	Device output (DOUT) execution error			

Table 15.4 Operation Control/Transition Execution Errors (16300 to 16599) (Continued)

Error	Error Factor		Error Processing	Corrective Action
Code	Name	Definition		
16337	Device input (DIN) execution error	The device number which indirectly specifies (D) is illegal.	The block processing in execution is stopped and the next block is executed.	Correct the program so that the device number which indirectly specifies (D) is proper.
16380	Signed 16-bit integral value conversion (SHORT) execution error	The (S) data is outside the signed 16-bit integral value range.		Correct the program so that the (S) data is within the signed 16 -bit integral value range.
16381	Unsigned 16-bit integral value conversion (USHORT) execution error	The (S) data is outside the unsigned 16-bit integral value range.		Correct the program so that the (S) data is within the unsigned 16-bit integral value range.
16382	Signed 32-bit integral value conversion (LONG) execution error	The (S) data is outside the signed 32-bit integral value range.		Correct the program so that the (S) data is within the signed 32-bit integral value range.
16383	Unsigned 32-bit integral value conversion (ULONG) execution error	The (S) data is outside the unsigned 32-bit integral value range.		Correct the program so that the (S) data is within the unsigned 32-bit integral value range.
16398	Tangent (TAN) execution error	(S) is $90+(180 * \mathrm{n})$. (n is an integer)		Correct the program so that (S) is not $90+(180 * n)$. (n is an integer)
16399	Arcsine (ASIN) execution error	(S) is outside the range -1.0 to 1.0 .		Correct the program so that (S) is within the range -1.0 to 1.0 .
16400	Arccosine (ACOS) execution error			
16402	Square root (SQRT) execution error	(S) is a negative number.		Correct the program so that (S) is a positive number.
16403	BCD \rightarrow BIN conversion (BIN) execution error	Any digit of (S) has a value other than 0 to 9.		Correct the program so that each digit of (S) is 0 to 9 .
16404	$\mathrm{BIN} \rightarrow \mathrm{BCD}$ conversion (BCD) execution error	The (S) value is outside the range where BIN data can be converted into $B C D$ data.		Correct the program so that the (S) value is within the range.
16405	Natural logarithm (LN) execution error	(S) is 0 or a negative number.		Correct the program so that (S) is a positive number.
16462	Indirectly specified 16-bit motion device (\#(n)) read error	The indirectly specified device number is outside the range.		Correct the program so that the indirectly specified device number is proper.
16463	Indirectly specified 32-bit motion device (\#(n)L) read error	The indirectly specified device number is outside the range or an odd number.		
16464	Indirectly specified 64-bit motion device (\#(n)F) read error			
16465	Indirectly specified 16-bit data register ($\mathrm{D}(\mathrm{n})$) read error	The indirectly specified device number is outside the range.		
16466	Indirectly specified 32-bit data register $(\mathrm{D}(\mathrm{n}) \mathrm{L})$ read error	The indirectly specified device number is outside the range or an odd number.		
16467	Indirectly specified 64-bit data register ($\mathrm{D}(\mathrm{n}) \mathrm{F}$) read error			

Table 15.4 Operation Control/Transition Execution Errors (16300 to 16599) (Continued)

Error Code	Error Factor		Error Processing	Corrective Action
	Name	Definition		
16468	Indirectly specified 16-bit link register (W(n)) read error	The indirectly specified device number is outside the range.	The block processing in execution is stopped and the next block is executed.	Correct the program so that the indirectly specified device number is proper.
16469	Indirectly specified 32-bit link register (W(n)L) read error	The indirectly specified device number is outside the range or an odd number.		
16470	Indirectly specified 64-bit link register (W(n):F) read error			
16471	Indirectly specified 16-bit timer present value (T(n)) read error	The indirectly specified device number is outside the range.		
16472	Indirectly specified 16-bit counter present value (C(n)) read error			
16486	Indirectly specified input relay (X(n)) read error			
16487	Indirectly specified output relay ($\mathrm{Y}(\mathrm{n})$) read error			
16488	Indirectly specified internal/latch relay ($\mathrm{M}(\mathrm{n}) / \mathrm{L}(\mathrm{n})$) read error			
16489	Indirectly specified link relay ($\mathrm{B}(\mathrm{n}$)) read error			
16490	Annunciator ($\mathrm{F}(\mathrm{n}$)) read error			
16491	Timer contact (TT(n)) read error			
16492	Timer coil (TC(n)) read error			
16493	Counter contact (CT(n)) read error			
16494	Counter coil (CC(n)) read error			
16516	Indirectly specified 16-bit batch input relay ($\mathrm{X}(\mathrm{n})$) read error	The indirectly specified device number is outside the range or is not a multiple of 16 .		
16517	Indirectly specified 32-bit batch input relay ($\mathrm{X}(\mathrm{n})$) read error			
16518	Indirectly specified 16-bit batch output relay (Y(n)) read error			
16519	Indirectly specified 32-bit batch output relay ($\mathrm{Y}(\mathrm{n})$) read error			
16520	Indirectly specified 16-bit batch internal/latch relay ($M(n) / L(n)$) read error			

Table 15.4 Operation Control/Transition Execution Errors (16300 to 16599) (Continued)

$\begin{aligned} & \text { Error } \\ & \text { Code } \end{aligned}$	Error Factor		Error Processing	Corrective Action
	Name	Definition		
16521	Indirectly specified 32-bit batch internal/latch relay ($\mathrm{M}(\mathrm{n}) / \mathrm{L}(\mathrm{n})$) read error	The indirectly specified device number is outside the range or is not a multiple of 16 .	The block processing in execution is stopped and the next block is executed.	Correct the program so that the indirectly specified device number is proper.
16522	Indirectly specified 16-bit batch link relay $(B(n))$ read error			
16523	Indirectly specified 32-bit batch link relay $(B(n))$ read error			
16524	Indirectly specified 16-bit batch annunciator ($\mathrm{F}(\mathrm{n})$) read error			
16525	Indirectly specified 32-bit batch annunciator ($\mathrm{F}(\mathrm{n})$) read error			
16526	Indirectly specified 16-bit batch timer contact (TT(n)) read error			
16527	Indirectly specified 32-bit batch timer contact (TT(n)) read error			
16528	Indirectly specified 16-bit batch timer coil (TC(n)) read error			
16529	Indirectly specified 32-bit batch timer coil (TC(n)) read error			
16530	Indirectly specified 16-bit batch counter contact (CT(n)) read error			
16531	Indirectly specified 32-bit batch counter contact (CT(n)) read error			
16532	Indirectly specified 16-bit batch counter coil (CT(n)) read error			
16533	Indirectly specified 32-bit batch counter coil (CC(n)) read error			

15. ERROR LISTS

15.2 SFC Parameter Errors

Table 15.5 PLC Ready (M2000) OFF \rightarrow ON Errors (17000 to 17009)

Error	Error Factor		Error Processing	Corrective Action
Code	Name	Definition		
17000	Normal task consecutive transition count error	The normal task's consecutive transition count of the SFC program started by the normal task is outside the range 1 to 30 .	The initial value of 3 is used for control.	Turn PLC ready (M2000) OFF, make correction to set the value within the range, and write it to the CPU.
17001	Event task consecutive transition count error	The set number of consecutive transitions of the SFC program started by the event task is outside the range 1 to 10 .	The initial value of 1 is used for control.	
17002	NMI task consecutive transition count error	The set number of consecutive transitions of the SFC program started by the NMI task is outside the range 1 to 10 .		

Table 15.6 SFC Program Start Errors (Error Code 17010 to 17019)

Error Code	Name	Error Processing	Corrective Action	
	Exectinition Exlled task setting is ill		The initial value (normal task) is used for control.	Turn PLC ready (M2000) OFF, make correction, and write a correct value to the CPU.
17011	Executed task setting is illegal (event)	Two or more fixed cycles of the event task have been set.		

16. LIMIT SWITCH OUTPUT FUNCTION

16. LIMIT SWITCH OUTPUT FUNCTION

The limit switch output function is designed to output the ON/OFF signal corresponding to the data range of the watch data set per output device. You can set up to 32 points of output devices.
16.1 Operations
(1) The limit switch output function provides an ON output to an output device while the watch data value is in the ON output region set with (ON Value) and (OFF Value).
(a) The (ON Value), (OFF Value) and watch data value are handled as signed data.
The ON output region where an ON output is provided to the output device is governed by the magnitude relationship between (ON Value) and (OFF Value) as indicated below.

Relationship between (ON Value) and (OFF Value)	ON Output Region
(ON Value) $<$ (OFF Value)	(ON Value) \leq (watch data value) < (OFF Value)
(ON Value $)>$ (OFF Value)	(ON Value) \leq (watch data value) (Watch data value) $<$ (OFF Value)
(ON Value $)=($ OFF Value $)$	Output OFF in whole region

1) If (ON Value) < (OFF Value)

2) If (ON Value) > (OFF Value)

3) If (ON Value) $=$ (OFF Value)

(b) The limit switch outputs are controlled on the basis of each watch data in the PCPU ready status (M9047: ON) after PLC ready (M2000) has turned from OFF to ON.
When the PCPU ready flag (M9047) turns OFF, all points turn OFF. When (ON Value) and (OFF Value) are specified with word devices, the word device contents are imported to the internal area when PLC ready (M2000) turns from OFF to ON.
Thereafter, in each motion operation cycle, the word device contents are imported to control the limit switch outputs.
(c) You can set multiple outputs (up to 32 points) to one piece of watch data. In each setting, the output device may be the same.
If multiple ON region settings have been made to the same output device, the logical add of the output results in the regions is output.

(2) You can set an output enable/disable bit to enable/disable the limit switch outputs point-by-point.
Limit switch output control is exercised when the output enable/disable bit is ON, and the output is OFF when it is OFF.
When there is no setting, the outputs are always enabled.
(3) You can set a forced output bit to forcibly provide (turn ON) the limit switch outputs point-by-point.
The output is ON when the forced output bit is ON.
This setting overrides OFF (disable) of the "output enable/disable bit".
When there is no setting, no forced outputs are always provided.
(4) When multiple pieces of watch data, ON region, output enable/disable bit and forced output bit are set to the same output device, the logical add of the output results of the settings is output.

(5) The conventional limit output function cannot be used.

The following settings and devices are all invalid.

- "Limit output module" in system settings
- "Limit output used/unused" setting in fixed parameters
- "Limit switch output enable" of each axis command device
- Limit switch output disable setting registers
$\left(\begin{array}{ll}\text { A172SHCPUN } & \text { : D1008 to D1011 } \\ \text { A173UHCPU (-S1) : D760 to D775 } \\ \text { A273UHCPU-S3 } & \text { : D760 to D775 }\end{array}\right]$
- Limit switch output status registers
$\left(\begin{array}{ll}\text { A172SHCPUN } & : \text { D9180 to D9183 } \\ \text { A173UHCPU (-S1) } & \text { : D776 to D791 } \\ \text { A273UHCPU-S3 } & \text { : D776 to D791 }\end{array}\right)$
- "Limit switch output used/unused" setting in mechanical system output module parameters

16. LIMIT SWITCH OUTPUT FUNCTION

16.2 Limit Output Setting Data

Limit output data are listed below.
You can set up to 32 points of output devices.
(The following items No. 1 to No. 6 are set together as one point.)

No.	Item		Setting Range	Import Cycle	Refresh Cycle	Remarks
1	Output device		Bit device (X, Y, M, L, B)	-	Operation cycle	
2	Watch data		Motion control data/ word device (D, W, \#, absolute address) (16-bit integer type/32-bit integer type/ 64-bit floating-point type)	Operation cycle	-	
3	ON region setting	ON Value	Word device (D, W, \#)/constant (K, H)	Operation cycle	-	
		OFF Value	Word device (D, W, \#)/constant (K, H)	Operation cycle	-	
4	Output enable/disable bit		Bit device (X, Y, M, L, B, F, TT, TC, CT, CC, special M)/ none (default)	Operation cycle	-	ON: Enable OFF: Disable None: Always enable
5	Forced output bit		Bit device (X, Y, M, L, B, F, TT, TC, CT, CC, special M)/ none (default)	Operation cycle	-	None: No forced output always provided (OFF status)

(1) Output device
(a) Set the bit device which outputs the ON/OFF signal in response to the preset watch data.
(b) As the output device, you can use the following devices.

Item		Device Number Setting Range	
		A173UHCPU (-S1) /A273UHCPU-S3	
Input relay ${ }^{\text {(Note-1) }}$	X0 to X7FF	X0 to X1FFF	
Output relay ${ }^{\text {(Note-2) }}$	Y0 to Y7FF	Y0 to Y1FFF	
Internal relay ${ }^{\text {(Note-3) }}$	M0 to M2047	M0 to M8191	
Latch relay ${ }^{\text {(Note-3) }}$	L0 to L2047	L0 to L8191	
Link relay	B0 to B3FF	B0 to B1FFF	

(Note-1): As PX is write-disabled, it cannot be used as the output device.
For X , only the free numbers within the input card non-loading range and outside the link range may be used.
Note that when the A172SHCPUN is used, there will be a read response delay as indicated below.

Read CPU	Response Delay
Motion CPU	1 sequence scan
PLC CPU	None

(Nore-2): Note the following points when setting Y as the output device.

- When Y is set, response will be as indicated below.

Y Classification			Response
PBUS	PLC device		Motion operation cycle
	Actual output		
SBUS	Refresh system	PLC device	Motion operation cycle
		Actual output	Motion operation cycle + PLC scan time
	Direct system (A172SHCPUN only)	PLC device	Motion operation cycle
		Actual output	Not provided

- When the STOP \rightarrow RUN time output mode of the PLC is set to "before operation", performing the following operation to change the output device setting may cause the ON/OFF status of the previously set output device to be output continuously, resulting in an unexpected output status.
If such operation must be performed, set the STOP \rightarrow RUN time output mode of the PLC to "after 1 scan run".

(Note-3): As the output devices, M2001 to M2032 cannot be used with the A173UHCPU
(-S1)/A273UHCPU-S3, and M2001 to M2008 with the A172SHCPUN. While PCPU ready (M9074) is ON, do not perform write from the sequence ladder to the 16 -point range which begins with a multiple of 16 , including the output device.
Such write operation will not be guaranteed.
The other devices in this range should be used in motion SFC operation control/transition control programs (SET/RST/DOUT).
(Device range example: When the output device is M10, M0 to M15 are in the corresponding range.)
(2) Watch data
(a) This data is used to perform the limit switch output function.

This data is comparison data to output the ON/OFF signal.
The output device is ON/OFF-controlled according to the ON region setting.
(b) As the watch data, motion control data or any word device data can be used.

1) Motion control data

Item	Unit	Data Type	Axis Number Setting Range	
			A172SHCPUN	A173UHCPU (-S1) /A273UHCPU-S3
Feed current value		32-b	1 to 8	1 to 32
Real current value	unit	integer		
Deviation counter value	PULSE			
Motor current (Command output voltage: ACF)	$\begin{gathered} 0.1 \% \\ (0.01 \mathrm{~V}) \end{gathered}$	16-bit integer type		
Motor speed	0.1r/min	32-bit integer type		
Cam shaft within-one-revolution current value	PULSE			
Feed current value (temporary)				
After-differential current value (temporary)				
After-differential encoder current value			1	1 to 12
Encoder current value				

2) Word device data

Item		Device Number Setting Range	
		A173UHCPU (-S1) /A273UHCPU-S3	
Data register	D0 to D1023	D0 to D8191	
Link register	W0 to W3FF	W0 to W1FFF	
Motion device	\#0 to \#8191	\#0 to \#8191	
Absolute address *1	H0 to HFFFFFFFF	H0 to HFFFFFFFF	

*1 If the specified absolute address is outside the SRAM range of the motion controller, limit switch output control for the corresponding watch data is not exercised.
3) When you have set any device data, specify the following data type as the data type to be compared.

Data Type	Remarks
16-bit integer type	Specify the absolute address as an even number.
32-bit integer type	Specify the device number as an even number. Specify the absolute address as a multiple of 4.
64-bit floating-point type	Specify the device number as an even number. Specify the absolute address as a multiple of 8.

(3) ON region setting
(a) Set the data range where the output device is turned ON/OFF in response to the watch data.
(b) The following devices can be used as the ON Value and OFF Value of the data range.
The data type of the device/constant to be set is the same as the type of the watch data.

Item	Device Number Setting Range	
	A172SHCPUN	A173UHCPU (-S1) /A273UHCPU-S3
Data register	D0 to D1023	D0 to D8191
Link register	W0 to W3FF	W0 to W1FFF
Motion device	\#0 to \#8191	\#0 to \#8191
Constant	$\mathrm{Hn} / \mathrm{Kn}$	$\mathrm{Hn} / \mathrm{Kn}$

(4) Output enable/disable bit
(a) Set the status of the output enable/disable bit when you want to disable the limit switch outputs during operation.

1) The following control is exercised.

Output Enable/Disable Bit Status		Control
Without setting (always enable)	Limit switch outputs are turned ON/OFF on the	
With setting	ON (enable)	basis of the ON region setting (ON Value, OFF Value).
	OFF (disable)	Limit switch outputs are turned OFF.

(b) Usable devices

Item		Device Number Setting Range	
		A173UHCPU (-S1) IA273UHCPU-S3	
Input relay	X0 to X7FF	X0 to X1FFF	
Output relay	Y0 to Y7FF	Y0 to Y1FFF	
Internal relay	M0 to M2047	M0 to M8191	
Latch relay	L0 to L2047	L0 to L8191	
Link relay	B0 to B3FF	B0 to B1FFF	
Annunciator	F0 to F255	F0 to F2047	
Timer contact	TT0 to TT255	TT0 to TT2047	
Timer coil	TC0 to TC255	TC0 to TC2047	
Counter contact	CT0 to CT255	CT0 to CT1023	
Counter coil	CC0 to CC255	CC0 to CC1023	
Special relay	M9000 to M9255	M9000 to M9255	

(5) Forced output bit
(a) Set the "forced output bit" when you want to forcibly provide the limit switch outputs during operation.
This setting overrides OFF (disable) of the above "output enable/disable bit".

1) The following control is exercised.

Forced Output Bit		Control
Without setting		Limit switch outputs are turned ON/OFF on the
With setting	ON (enable)	basis of the "output enable/disable bit" and ON region setting (ON Value, OFF Value).
	OFF (disable)	Limit switch outputs are turned ON.

(b) Usable devices

Item		Device Number Setting Range	
		A173UHCPU (-S1) /A273UHCPU-S3	
Input relay	X0 to X7FF	X0 to X1FFF	
Output relay	Y0 to Y7FF	Y0 to Y1FFF	
Internal relay	M0 to M2047	M0 to M8191	
Latch relay	L0 to L2047	L0 to L8191	
Link relay	B0 to B3FF	B0 to B1FFF	
Annunciator	F0 to F255	F0 to F2047	
Timer contact	TT0 to TT255	TT0 to TT2047	
Timer coil	TC0 to TC255	TC0 to TC2047	
Counter contact	CT0 to CT255	CT0 to CT1023	
Counter coil	CC0 to CC255	CC0 to CC1023	
Special relay	M9000 to M9255	M9000 to M9255	

APPENDICES

APPENDIX 1 PROCESSING TIMES

Appendix 1.1 Operation Control/Transition Instruction Processing Times
(1) Operation instructions

Classification	Symbol	Instruction	Operation Expression	$\begin{gathered} \text { A172SHCPUN/ } \\ \text { A173UHCPU(-S1) } \\ \text { Unit }(\mu \mathrm{s}) \\ \hline \end{gathered}$	A273UHCPU-S3 Unit ($\mu \mathrm{s}$)
Binary operation	$=$	Substitution	\#0=\#1	16.9	20.9
			D0=D1	24.6	27.9
			\#0L=\#2L	24.3	30.1
			D0L=D2L	38.9	51.6
			\#0F=\#4F	26.0	32.0
			D0F=D4F	42.9	55.7
	+	Addition	\#0=\#1+\#2	21.3	25.4
			D0=D1+D2	30.1	33.0
			\#0L=\#2L+\#4L	30.5	37.1
			D0L=D2L+D4L	45.8	60.9
			\#0F=\#4F+\#8F	37.3	41.7
			D0F=D4F+D8F	55.8	68.3
	-	Subtraction	\#0=\#1-\#2	21.2	25.4
			D0=D1-D2	30.1	33.0
			\#0L=\#2L-\#4L	30.6	36.5
			D0L=D2L-D4L	45.3	59.5
			\#0F=\#4F-\#8F	37.6	41.7
			D0F=D4F-D8F	55.6	67.6
	*	Multiplication	\#0=\#1 * \#2	21.1	25.4
			D0=D1*D2	30.2	33.0
			\#0L=\#2L * \#4L	30.9	36.5
			D0L=D2L * D4L	46.8	59.5
			\#0F=\#4F * \#8F	38.0	41.7
			D0F=D4F * D8F	56.7	67.6
	1	Division	\#0=\#1/\#2	25.4	32.7
			D0=D1/D2	34.1	41.7
			\#0L=\#2L/\#4L	34.8	44.9
			D0L=D2L/D4L	51.1	69.0
			\#0F=\#4F/\#8F	43.7	44.3
			D0F=D4F/D8F	61.1	70.1
	\%	Remainder	\#0=\#1\%\#2	24.0	32.5
			D0=D1\%D2	32.9	40.1
			\#0L=\#2L\%\#4L	34.2	43.6
			D0L=D2L\%D4L	51.0	66.7
Bit operation	\sim	Bit inversion (complement)	\#0 $=$ \#1	18.8	22.6
			D0 $=^{\sim}$ D1	26.7	31.1
			\#0L= ${ }^{\sim}$ \#2L	26.4	32.4
			DOL= ${ }^{\text {D } 2 L ~}$	41.8	54.9
	\&	Bit logical AND	\#0=\#1\&\#2	20.8	25.2
			D0=D1\&D2	28.5	32.7
			\#0L=\#2L\&\#4L	30.6	36.2
			D0L=D2L\&D4L	46.1	59.2
	\|	Bit logical OR	\#0=\#1\|\#2	20.8	25.2
			D0=D1\|D2	29.1	32.7
			\#0L=\#2L\|\#4L	30.0	36.2
			D0L=D2L\|D4L	45.5	59.2

Classification	Symbol	Instruction	Operation Expression	$\begin{gathered} \text { A172SHCPUN/ } \\ \text { A173UHCPU(-S1) } \\ \text { Unit }(\mu \mathrm{s}) \end{gathered}$	A273UHCPU-S3 Unit ($\mu \mathrm{s}$)
Bit operation	\wedge	Bit exclusive OR	\#0=\#1^\#2	21.2	25.2
			D0=D1^D2	29.4	32.7
			\#0L=\#2L^\#4L	30.3	36.2
			D0L=D2L^D4L	45.7	59.7
	>>	Bit right shift	\#0=\#1>>\#2	21.4	25.6
			D0=D1>>D2	30.2	33.2
			\#0L=\#2L>>\#4L	30.8	37.7
			D0L=D2L>>D4L	46.9	61.8
	<<	Bit left shift	\#0=\#1<<\#2	21.8	25.6
			D0=D1<<D2	30.5	33.2
			\#0L=\#2L<<\#4L	31.7	36.8
			D0L=D2L<<D4L	47.4	59.8
Sign	-	Sign inversion (Complement of 2)	\#0=-\#1	18.5	22.4
			D0=-D12	26.4	29.4
			\#0L=-\#2L	26.1	31.8
			D0L=-D2L	41.5	53.3
			\#0F=-\#4F	27.8	35.5
			D0F $=-\mathrm{D} 4 \mathrm{~F}$	44.6	59.2
Standard function	SIN	Sine	\#0F=SIN (\#4F)	59.6	68.1
			D0F=SIN (D4F)	76.4	92.2
	COS	Cosine	\#0F=COS (\#4F)	61.2	88.5
			D0F=COS (D4F)	77.9	111.1
	TAN	Tangent	\#0F=TAN (\#4F)	90.7	98.1
			D0F=TAN (D4F)	108.0	121.0
	ASIN	Arcsine	\#0F=ASIN (\#4F)	86.2	72.3
			D0F=ASIN (D4F)	103.5	95.9
	ACOS	Arccosine	\#0F=ACOS (\#4F)	89.5	75.1
			D0F=ACOS (D4F)	107.0	100.3
	ATAN	Arctangent	\#0F=ATAN (\#4F)	70.9	86.9
			D0F=ATAN (D4F)	88.9	110.5
	SQRT	Square root	\#0F=SQRT (\#4F)	45.1	70.0
			D0F=SQRT (D4F)	62.2	94.0
	LN	Natural logarithm	\#0F=LN (\#4F)	55.8	78.3
			D0F=LN (D4F)	73.8	102.0
	EXP	Exponential operation	\#0F=EXP (\#4F)	47.0	85.3
			D0F=EXP (D4F)	65.3	108.7
	ABS	Absolute value	\#0F=ABS (\#4F)	30.0	37.6
			D0F=ABS (D4F)	47.0	62.0
	RND	Round-off	\#0F=RND (\#4F)	41.1	53.5
			D0F=RND (D4F)	59.1	77.9
	FIX	Round-down	\#0F=FIX (\#4F)	31.3	46.1
			D0F=FIX (D4F)	48.4	70.6
	FUP	Round-up	\#0F=FUP (\#4F)	30.2	48.2
			D0F=FUP (D4F)	46.7	71.7
	BIN	$\mathrm{BCD} \rightarrow \mathrm{BIN}$ conversion	\#0=BIN (\#1)	21.1	25.0
			DO=BIN (D1)	29.0	33.5
			\#0L=BIN (\#2L)	29.2	35.5
			D0L=BIN (D2L)	44.9	56.8
	BCD	BIN \rightarrow BCD conversion	\#0=BCD (\#1)	31.6	55.4
			DO=BCD (D1)	39.4	63.9
			\#0L=BCD (\#2L)	45.6	106.1
			D0L=BCD (D2L)	62.5	128.7

Classification	Symbol	Instruction	Operation Expression	$\begin{gathered} \hline \text { A172SHCPUN/ } \\ \text { A173UHCPU(-S1) } \\ \text { Unit }(\mu \mathrm{s}) \\ \hline \end{gathered}$	$\begin{gathered} \text { A273UHCPU-S3 } \\ \text { Unit (} \mu \mathrm{s} \text {) } \end{gathered}$
Type conversion	SHORT	Conversion into 16-bit integer type (signed)	\#0=SHORT (\#2L)	22.8	26.9
			\#0=SHORT (\#4F)	31.0	47.5
			D0=SHORT (D2L)	33.5	39.9
			D0=SHORT (D4F)	42.2	57.7
	USHORT	Conversion into 16-bit integer type (unsigned)	\#0=USHORT (\#2L)	23.3	27.0
			\#0=USHORT (\#4F)	30.4	47.1
			D0=USHORT (D2L)	33.9	39.9
			D0=USHORT (D4F)	41.5	57.2
	LONG	Conversion into 32-bit integer type (signed)	\#OL=LONG (\#2)	24.4	28.5
			\#0L=LONG (\#4F)	35.4	50.4
			D0L=LONG (D2)	40.6	50.2
			D0L=LONG (D4F)	52.2	74.5
	ULONG	Conversion into 32-bit integer type (unsigned)	\#OL=ULONG (\#2)	25.9	28.8
			\#OL=ULONG (\#4F)	47.2	62.9
			D0L=ULONG (D2)	41.6	50.1
			D0L=ULONG (D4F)	55.9	72.0
	FLOAT	Conversion into 64-bit floating-point type (signed)	\#OF=FLOAT (\#4)	26.6	32.2
			\#0F=FLOAT (\#4L)	29.3	35.7
			D0F=FLOAT (D4)	42.6	55.9
			D0F=FLOAT (D4L)	45.7	58.8
	UFLOAT	Conversion into 64-bit floating-point type (unsigned)	\#OF=UFLOAT (\#4)	26.8	32.3
			\#0F=UFLOAT (\#4L)	29.3	36.5
			D0F=UFLOAT (D4)	43.4	54.7
			D0F=UFLOAT (D4L)	45.8	60.1
Bit device status	(None)	ON (normally open contact) (when condition enables)	SET M1000 = M0	39.5	39.7
			SET M1000 = X100	39.8	42.0
			SET M1000 = PX0	50.8	44.5
	!	OFF (normally closed contact) (when condition enables)	SET M1000 = !M0	41.3	41.3
			SET M1000 = ! X100	42.1	43.6
			SET M1000 = ! PX0	47.7	46.1
Bit device control	SET	Device set	SET M1000	28.3	33.2
			SET Y100	29.9	34.5
			SET PY0	28.6	31.9
	RST	Device reset	RST M1000	28.4	32.5
			RST Y100	29.5	33.3
			RST PY0	27.6	31.6
	DOUT	Device output	DOUT M0, \#0	29.6	33.9
			DOUT M0, \#0L	34.5	37.9
			DOUT Y100, \#0	31.7	35.3
			DOUT Y100, \#0L	38.3	40.4
			DOUT PY0, \#0	36.4	38.8
			DOUT PYO, \#OL	45.7	49.1
	DIN	Device input	DIN \#0, M0	26.8	30.8
			DIN \#0L, M0	32.5	33.9
			DIN \#0, X0	16.7	15.3
			DIN \#0L, X0	30.5	34.1
			DIN \#0, PX0	34.1	36.1
			DIN \#0L, PX0	42.2	45.9

Classification	Symbol	Instruction	Operation Expression	$\begin{gathered} \hline \text { A172SHCPUN/ } \\ \text { A173UHCPU(-S1) } \\ \text { Unit }(\mu \mathrm{s}) \\ \hline \end{gathered}$	$\begin{gathered} \text { A273UHCPU-S3 } \\ \text { Unit (} \mu \mathrm{s} \text {) } \end{gathered}$
Logical operation	*	Logical AND	SET M1000 $=$ M0 * M1	52.5	55.4
			SET M1000 $=$ X100 $*$ X101	53.7	58.1
			SET M1000 = PX0 * PX1	47.2	63.4
	+	Logical OR	SET M1000 = M0+M1	53.1	55.4
			SET M1000 = X100+X101	55.5	58.1
			SET M1000 = PX0+PX1	47.4	63.4
Comparison operation	==	Equal to (when condition enables)	SET M1000 = \#0==\#1	40.1	40.5
			SET M1000 = D0==D1	41.1	42.3
			SET M1000 = \#0L==\#2L	43.3	45.3
			SET M1000 = D0L==D2L	45.6	51.3
			SET M1000 = \#0F==\#4F	45.9	49.4
			SET M1000 = D0F==D4F	49.4	57.3
	!=	Not equal to (when condition enables)	SET M1000 = \#0!=\#1	39.5	40.5
			SET M1000 = D0!=D1	41.9	42.3
			SET M1000 = \#0L!=\#2L	43.5	45.3
			SET M1000 = D0L!=D2L	45.8	51.3
			SET M1000 = \#0F!=\#4F	46.2	49.4
			SET M1000 = D0F!=D4F	49.7	57.3
	$<$	Less than (when condition enables)	SET M1000 = \#0<\#1	39.9	40.5
			SET M1000 = D0<D1	41.2	42.2
			SET M1000 = \#0L<\#2L	43.4	45.3
			SET M1000 = D0L<D2L	45.3	51.3
			SET M1000 = \#0F<\#4F	46.6	49.4
			SET M1000 = D0F<D4F	49.0	57.3
	<=	Less than or equal to (when condition enables)	SET M1000 = \#0<=\#1	39.8	40.5
			SET M1000 = D0<=D1	41.3	42.3
			SET M1000 = \#0L<=\#2L	42.3	45.3
			SET M1000 = D0L<=D2L	45.2	51.3
			SET M1000 = \#0F<=\#4F	44.9	49.4
			SET M1000 = D0F<=D4F	48.9	57.3
	>	More than (when condition enables)	SET M1000 = \#0>\#1	38.7	40.5
			SET M1000 = D0>D1	41.1	42.3
			SET M1000 = \#0L>\#2L	42.4	45.3
			SET M1000 = D0L>D2L	44.8	51.4
			SET M1000 = \#0F>\#4F	44.7	49.9
			SET M1000 = D0F>D4F	49.1	57.3
	=>	More than or equal to (when condition enables)	SET M1000 = \#0=>\#1	39.7	40.5
			SET M1000 = D0=>D1	41.0	42.3
			SET M1000 = \#0L=>\#2L	43.5	45.3
			SET M1000 = D0L $=>$ D2L	45.0	51.3
			SET M1000 = \#0F $=>\# 4 \mathrm{~F}$	45.7	49.4
			SET M1000 = D0F $=>$ D4F	49.5	57.8
Motion-dedicated function	CHGV	Speed change request	CHGV (K1, \#0)	18.4	22.9
			CHGV (K1, D0)	21.0	27.6
			CHGV (K1, \#0L)	20.0	25.3
			CHGV (K1, D0L)	28.7	37.4
	CHGT	Torque limit value change request	CHGT (K1, \#0)	17.9	22.1
			CHGT (K1, D0)	20.5	24.7
			CHGT (K1, \#0L)	20.8	26.0
			CHGT (K1, D0L)	30.1	38.1

Classification	Symbol	Instruction	Operation Expression	A172SHCPUN/ A173UHCPU(-S1) Unit ($\mu \mathrm{s}$)	$\begin{gathered} \text { A273UHCPU-S3 } \\ \text { Unit }(\mu \mathrm{s}) \end{gathered}$
Others	El	Event task enable	El	5.3	7.6
	DI	Event task disable	DI	5.5	6.8
	NOP	No operation	NOP	1.5	1.7
	BMOV	Block move	BMOV \#0, \#100, K10	25.5	29.4
			BMOV D0, D100, K10	33.8	38.4
			BMOV \#0, \#100, K100	71.6	85.4
			BMOV D0, D100, K100	138.1	168.0
			BMOV N1, \#0, K512	54.3	64.5
			BMOV N1, D0, K512	53.5	64.7
	TIME	Time to wait		-	-

(2) Transition conditional expressions

Classification	Symbol	Instruction	Operation Expression	A172SHCPUN/ A173UHCPU(-S1) Single Operation Expression Processing Time ($\mu \mathrm{s}$)	A273UHCPU-S3 Single Operation Expression Processing Time ($\mu \mathrm{s}$)
Bit device status	(None)	ON (normally open contact) (when condition enables)	M0	24.7	20.7
			X100	22.3	17.7
			PX0	25.9	17.5
	!	OFF (normally closed contact) (when condition enables)	!M0	26.4	22.4
			! X100	24.1	19.3
			!PX0	27.6	19.5
Logical operation	*	Logical AND	M 0 * M1	31.8	26.7
			X100 * X101	29.9	23.8
			PX0 * PX1	36.2	23.4
	+	Logical OR	M0+M1	31.8	27.1
			X100+X101	30.0	24.0
			PX0+PX1	36.2	24.0
Comparison operation	==	Equal to (when condition enables)	\#0==\#1	9.5	8.8
			D800==D801	19.2	16.6
			\#0L==\#2L	25.0	19.1
			D800L==D802L	38.4	29.3
			\#0F==\#4F	29.7	22.2
			D800F==D804F	44.3	33.4
	!=	Not equal to (when condition enables)	\#0!=\#1	9.5	8.8
			D800!=D801	19.2	16.2
			\#0L!=\#2L	25.0	19.3
			D800L!=D802L	38.4	29.6
			\#0F!=\#4F	29.9	22.0
			D800F! = D804F	44.5	33.2
	<	Less than (when condition enables)	\#0<\#1	9.5	8.8
			D800<D801	19.2	16.4
			\#0L<\#2L	25.0	19.1
			D800L<D802L	38.4	29.3
			\#0F<\#4F	29.9	22.0
			D800F<D804F	44.5	33.1
	<=	Less than or equal to (when condition enables)	\#0<=\#1	9.5	8.8
			D800<=D801	19.2	16.5
			\#0L<=\#2L	25.0	19.3
			D800L<=D802L	38.4	29.3
			\#0F<=\#4F	29.9	22.2
			D800F<=D804F	44.5	33.3
	>	More than (when condition enables)	\#0>\#1	9.5	8.8
			D800>D801	19.2	16.1
			\#0L>\#2L	25.0	19.1
			D800L>D802L	38.6	29.1
			\#0F>\#4F	29.9	22.1
			D800F>D804F	44.5	33.3
	>=	More than or equal to (when condition enables)	\#0>=\#1	9.5	8.8
			D800>=D801	19.2	16.1
			\#0L>=\#2L	25.0	19.3
			D800L>=D802L	38.4	29.2
			\#0F>=\#4F	29.9	22.2
			D800F>=D804F	44.5	33.0

(3) Processing time taken when F and G are combined (program described in F/G is NOP)

		Parallel Branch (2 Pcs.)		Parallel Branch (5 Pcs.)			
			F - G		$\begin{gathered} 1 \\ \hline \text { F } \\ \hline \frac{1}{G} \\ \hline \end{gathered}$	F G	$\begin{gathered} 7 \\ \frac{7}{\mathrm{~F}} \\ \hline \mathrm{G} \end{gathered}$
		At branch	At coupling	At branc		At coupl	
A172SHCPUN A173UHCPU(-S1)	$\mu \mathrm{S}$	111	75	232		140	
A273UHCPU-S3	$\mu \mathrm{s}$	118	80	252		152	

(Note) Varies greatly with the started/cleared program.
POINT
Long processing time may cause a PCPU WDT error or servo fault. Especially for SFC programs run by event/NMI tasks, take care so that the processing time will not be too long.

Appendix 1.2 Motion Operation Cycles (msec)

CPU	A172SHCPUN			A173UHCPU(-S1)						A273UHCPU-S3					
OS type	SV13	SV22		SV13			SV22			SV13			SV22		
Set axis count	1 to 8	1 to 6	7 to 8	1 to 17	$\begin{gathered} 18 \text { to } \\ 29 \end{gathered}$	$\begin{gathered} 30 \text { to } \\ 32 \end{gathered}$	1 to 10	$\begin{gathered} 11 \text { to } \\ 18 \end{gathered}$	$\begin{gathered} 19 \text { to } \\ 32 \end{gathered}$	1 to 10	$\begin{gathered} 11 \text { to } \\ 21 \end{gathered}$	$\begin{gathered} 22 \text { to } \\ 32 \end{gathered}$	1 to 6	7 to 13	14 to 32
Operation cycle	3.5 ms	3.5 ms	7.1 ms	3.5 ms	7.1 ms	14.2 ms	3.5 ms	7.1 ms	14.2 ms	3.5 ms	7.1 ms	14.2 ms	3.5 ms	7.1 ms	14.2 ms

HEAD OFFICE:MITSUBISHI DENKI BLDG MARUNOUCHI TOKYO 100 TELEX: J24532 CABLE MELCO TOKYO NAGOYA WORKS : 1-14, YADA-MINAMI 5 , HIGASHI-KU , NAGOYA , JAPAN

