Changes for the Better HIGH POWER FACTOR CONVERTER FRERODTHC2

Compatible with the Harmonic Suppression Guidelines

Greatly suppressed power supply harmonics
-The HC2 converters, being the self-excitation three-phase bridge circuit under "the Harmonic Suppression Guidelines for The HC2 converters, being the self-excitation three-phase bridge circuit under "the Harmo
Specific Consumers", take the conversion coefficient of the equivalent capacity ($\mathrm{K} 5=0$).

Classification	Circuit type		Conversion coefficient	Application examples
1	Three-phase bridge	6 -pulse converter	$\mathrm{K} 11=1$	Railway substation Electro-chemistry Other
		12-pulse converter	$\mathrm{K} 12=5.5$	
		24-pulse converter	$\mathrm{K} 13=0.25$	
3	Three-phase bridge (smoothing capacitor)	Without a reactor	K31 $=3.4$	General-purpose inverter Lift Refrigerating air conditione Other
		With a reactor (on AC side)	K32 $=1.8$	
		With a reactor (on DC side)	K33 $=1.8$	
		With reactors (on AC/DC sides)	K34 $=1.4$	
5	Sell-excitation three-phase bridge		K5 $=0$	PWM converter

-The waveform with high peaks, which is typical of inverter's input current, is reshaped to be a sine ave lo The lowered effective value enables adoption of
smaller power-supply-side devices, such as a smaller power-supply-side devices, such as a
power supply transformer, MCCB, and cables. Such smaller equipment saves the cost of equipment.

Power reyencration function for energy saving The power regeneration function, which comes as a standard feature, eliminates the need for brake units. The power regeneration function gives a great breaking capability. (Regeneration is available continuously with 100% torque, and for 60 w with the maximum of 150% torque.) The regenerative power from the motor is returned to the

Connectable to multiple inverters The common converter method
enables the connection to up to 10 inverters."
The power returned during regenerative driving can be supplied to another inverter saving the overall energ.

Gompact design for space saving The high power factor converters (excluding 15K) and input reactors (75K or higher) have become much smaller than their conventional models (FR-HC, MT-HC)

5 Long life parts and life diagnosis function (1) Longer life parts

The service life of the cooling fans is now 10 years ${ }^{+1}$ and that can be even longer with the ON/OFF control of the cooling fan.

- Capacitors with a design life of 10 years ${ }^{4+1{ }^{* 2}}$ are adapted (Using a surrounding air temperature of $105^{\circ} \mathrm{C}$ for 5000 hours). With these capacitors, the service life of the converter is further extended
Surrunding ia temperature: Annual average of $40^{\circ} \mathrm{C}$ (free toom corrosive gas, tlammable

Estimated service lifespan of the consumable parts Part name Estimated lifespan Redergige value \begin{tabular}{|c|c|c|}
\hline Cooling Fan \& 10 years \& 2 to 3 years

\hline Main circuit smoothing capacitor \& 10 years \& 5 years

\hline

Smooting capacitios on the p pinted board \& 10 years \& 5 years

\hline
\end{tabular} 3. Exxerpt trom "The Periodidi Inspection Recommentations on Geneal.purpose

(2) The leading-edge life diagnosis function The degree of deterioration of the main circuit capacitor The degree of deterioration of the main circuit cap
cooling fan, and inrush current limit circuit can be diagnosed on the monitor
Using the self-diagnosis function, the part life warning can be output and the deterioration degre can be can be output and the deterioration degree can be
monitored. Thus, the self-diagnosis function prevent troubles from occurring.
: A warinin is ouptut when any of he control orrcuit capacitor, irrush current limito orican

Operation panel equipped with the setting difal (f:-ovor--gun) - Parameters can be copied using the operation panel (FR-DU07-CNV).
The setting values of the parameters can be stored to the opeale Otems such as input current, input voltage, input power (with
the regenerative display), bus voltage, etc. can be monitored. Operation can be easily performed with the setting dial.

Supporting more network protocols OHC2 supports RS-485 as a standard. With the option FR-A7NC, HC2 also supports CC-Link
The power can be monitored during driving/regenerative driving, and this monitoring tells you the energy saving effec
larm functions and voltage monitors of each phase help you to spot the cause of the alarm.

Applications

Extensive lineup

1: Use in oombination with standard aceessories. Cabes sto connecting standard accessories are not

-200V

Model name FR-HC2-■K	7.5	15	30	55	75
Applicable inverter capacity (kW)	7.5	15	30	55	75
Rated output capacity (kW) *3	10.7	19.8	38	71	92
Rated input voltage (V)	Three-phase 200 V to $220 \mathrm{~V} 50 \mathrm{~Hz} / 200 \mathrm{~V}$ to $230 \mathrm{~V} 60 \mathrm{~Hz} * 2$				
Rated input current (A)	33	61	115	215	278
Overload current rating *5	150\% 60s				
Permissible power supply voltage fluctuation	$\begin{aligned} & 170 \mathrm{~V} \text { to } 242 \mathrm{~V} 50 \mathrm{~Hz} \\ & 170 \mathrm{~V} \text { to } 253 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$				$\begin{gathered} 170 \mathrm{~V} \text { to } 230 \mathrm{~V} \\ 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \end{gathered}$
Permissible power supply frequency fluctuation	$\pm 5 \%$				
Input power factor	0.99 or more (when load ratio is 100\%)				
Power supply capacity (kVA)	14	25	47	88	110
Protective structure of the converter *6	Enclosed type (IP20) *7		Open type (IP00)		
Cooling system	Forced air cooling				
Approximate mass (kg) *8	7	12	24	39	53

-400V

Model name FR-HC2-H $\square \mathrm{K}$ *1	7.5	15	30	55	75	110	160	220	280	400	560
Applicable inverter capacity (kW)	7.5	15	30	55	75	110	160	220	280	400	560
Rated output capacity (kW) *3	11.0	20.2	37	73	92	135	192	264	336	476	660
Rated input voltage (V) *4	Three-phase 380 V to $460 \mathrm{~V} 50 \mathrm{~Hz} / 60 \mathrm{~Hz} * 2$										
Rated input current (A)	17	31	57	110	139	203	290	397	506	716	993
Overload current rating *5	150\% 60s										
Permissible power supply voltage fluctuation	323 V to $506 \mathrm{~V} 50 / 60 \mathrm{~Hz}$				323 V to $460 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						
Permissible power supply frequency fluctuation	$\pm 5 \%$										
Input power factor	0.99 or more (when load ratio is 100\%)										
Power supply capacity (kVA)	14	26	47	90	113	165	235	322	410	580	804
Protective structure of the converter *6	Enclosed type (IP20)*7		Open type (IP00)								
Cooling system	Forced air cooling										
Approximate mass (kg) *8	9	9	26	43	37	56	120	120	160	250	250

*1 Model name of the 400 V class ends with H .
*2 The permissible voltage imbalance ratio is 3% or less. (Imbalance ratio = (highest voltage between lines - average voltage between three lines) / average voltage between three lines $\times 100$).
*3 DC output capacity when the input voltage is 200 VAC (400 V for the 400 V class).
*4 Change the MC power supply stepdown transformer tap according to the input voltage. (Refer to the Instruction Manual)
*5 The \% value of the overload current rating indicates the ratio of the overload current to the converter's rated input current. For repeated duty, allow time for the converter and the inverter to return to or below the temperatures under 100\% load.
*6 The protective structure is IP40 for FR-DU07-CNV (except the PU connector) and IP00 for the outside box (220K or lower) and the reactor regardless of their capacities.
*7 When the hook of the converter front cover is cut off for installation of the plug-in option, the protective structure changes to the open type (IP00).
*8 Mass of FR-HC2 alone.

\%	Control method		PWM control
$\begin{aligned} & \text { ㅎ } \\ & \text { o } \end{aligned}$	Power supply frequency range		50 Hz to 60 Hz
\#	Current limit level		Current limit value selectable (0 to 220\% variable)
	Input signal (Five terminal)		The following signals can be assigned to Pr. 3 to Pr. 7 (input terminal function selection): converter stop, monitor switching, converter reset, external thermal relay, and inrush resistance overheat detection.
	Output signal Open collector output (Five terminals) Relay output (One terminal)		The following signals can be assigned to Pr. 11 to Pr. 16 (output terminal function selection): inverter run enable signal, converter reset, converter running, overload alarm, power supply phase detection, output voltage match, instantaneous power failure detection, regenerative drive recognition, electronic thermal relay pre-alarm, fan alarm, heatsink overheat pre-alarm, during retry, input current detection, zero current detection,life alarm, maintenance timer, instantaneous power failure detection hold, alarm, and fault output.
	For meter Pulse train output (Max. 2.4kHz: one terminal) Analog output (Max. 10VDC: one terminal)		The following signals can be assigned to Pr. 54 FM terminal function selection (pulse train output) and Pr. 50 AM terminal function selection (analog output): power supply frequency, input current, input voltage, converter output voltage, electronic thermal relay load factor, input power, reference voltage output.
	Operation panel (FR-DU07-CNV) Parameter unit (FR-PU07)	Operating status	Power supply frequency, input current, input voltage, fault or alarm indication, converter output voltage, electronic thermal relay load factor, cumulative energization time, cumulative power, input power, input power (with regenerative display), I/O terminal status*1, power/regenerative drive indication, option fitting states *2
		Fault record	Fault definition is displayed when a fault occurs. Past eight fault records and the data right before the fault (input voltage/current/bus voltage/cumulative energization) are stored.
		Interactive guidance	Function (help) for operation guide *2
Protective/warning function		Protective function	Overcurrent, overvoltage, converter protection thermal, fin overheat, instantaneous power failure, undervoltage, input phase loss, HC2 dedicated board disconnection, input power supply fault, external thermal relay operation $* 4$, parameter error, PU disconnection $* 4$, retry count excess $* 4$, converter CPU fault, operation panel power supply short circuit, 24VDC power output short circuit, input current detection value exceeded *4, inrush current limit circuit fault, internal circuit fault, option fault ${ }^{5}$, communication option fault $* 5$.
		Warning functions	Fan alarm, overload signal detection, electronic thermal relay pre-alarm, PU stop, maintenance timer alarm *4, parameter write error, copy operation error, operation panel lock, parameter copy alarm, no-phase detection
	Surrounding air temperature		$-10^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ (non-freezing)
	Ambient humidity		$90 \% \mathrm{RH}$ or less (non-condensing)
	Storage temperature *3		$-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
	Atmosphere		Indoors (without corrosive gas, flammable gas, oil mist, dust and dirt etc.)
	Altitude/ vibration		Maximum $1,000 \mathrm{~m}$ above sea level, $5.9 \mathrm{~m} / \mathrm{s}^{2}$ or less $* 6$ at 10 to 55 Hz (directions of $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes)

[^0]
Checking peripheral devices

－Peripheral devices

Always install the included peripheral devices．Check the model name of the each peripheral device．
For the 400 V class peripheral devices， H is indicated in front of the model name．
－FR－HC2－7．5K to 75K，FR－HC2－H7．5K to H220K

Peripheral Device Model Name	Description	Quantity
FR－HC2－（H）$\square \mathrm{K}$	High power factor converter	1
FR－HCL21－（H）$\square \mathrm{K}$	Filter reactor 1	1
FR－HCL22－（H）$\square \mathrm{K}$	Filter reactor 2	1
FR－HCB2－（H）$\square \mathrm{K}$	Outside box＊	1

＊Terminal screws are enclosed for FR－HCB2－7．5K，15K，FR－HCB2－H7．5K to H30K．（M5 × 6）
－FR－HC2－H280K to H560K

Peripheral Device Model Name	Model Name of Consisting Parts	Description	Quantity		
			280K	400K	560K
FR－HC2－H口K	FR－HC2－H $\square \mathrm{K}$	High power factor converter	1	1	1
FR－HCL21－H口K	FR－HCL21－H $\square \mathrm{K}$	Filter reactor 1	1	1	1
FR－HCL22－H口K	FR－HCL22－H $\square \mathrm{K}$	Filter reactor 2	1	1	1
FR－HCC2－H $\square \mathrm{K}$	FR－HCC2－H口K	Filter capacitor	1	2	3
	MDA－1	Filter capacitor alarm detector	－	2	3
FR－HCR2－H $\square \mathrm{K}$	0．96OHM BKO－CA1996H21	Inrush current limit resistor（without thermostat）	8	15	15
	0．96OHM BKO－CA1996H31	Inrush current limit resistor（with thermostat）	1	3	3
FR－HCM2－H口K	1PH 630VA BKO－CA2001H06	MC power supply stepdown transformer （400V－200V）	1	1	1
	S－N400FXYS AC200V 2A2B	Inrush current limit MC	－	3	3
	S－N600FXYS AC210V 2A2B	Inrush current limit MC	1	－	－
	SR－N4FX AC210V 4A	Buffer relay	1	2	2
	TS－807BXC－5P	Terminal block	6	－	－
	C152C481H21	Terminal block shorting conductor	6	－	－
	C152C423H21	MC shorting conductor	－	6	6
	MYQ4Z AC200／220	Mini relay for filter capacitor alarm detector	－	1	1
	PYF14T	Mini relay terminal block	－	1	1
	PYC－A1	Mini relay clip	－	2	2
	M12×50 ZENNEJI	MC shorting conductor bolt（M12 $\times 50$ ）	－	24	24
	M12	MC shorting conductor nut（M12）	－	24	24
	MIGAKI 12	MC shorting conductor washer（flat washer）	－	48	48
	BANE 12	MC shorting conductor washer（spring washer）	－	24	24
	SW－PW－P－NA M5 × 12	Inrush current limit resistor screw（M5 × 12）	－	54	54

Compatible inverter for the high power factor converter

Refer to the table below for the compatible inverter capacities when connecting one inverter to a converter．（Other combinations are not applicable．）
O：Compatible
－：The converter can be used as a common converter or a regenerative converter，but its harmonic suppression effect reduces．
\times ：Not compatible（Not applicable）

	Inverter capacity		3．7K	5．5K	7．5K	11K	15K	18．5K	22K	30K	37K	45K	55K	75K
完	FR－HC2－7．5K	－	\bigcirc	\bigcirc	\bigcirc	\times								
	FR－HC2－15K	－	－	－	\bigcirc	\bigcirc	\bigcirc	\times						
	FR－HC2－30K	－	－	－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times
	FR－HC2－55K	－	－	－	－	－	－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times
	FR－HC2－75K	－	－	－	－	－	－	－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc
主	FR－HC2－H7．5K	－	\bigcirc	\bigcirc	\bigcirc	\times								
	FR－HC2－H15K	－	－	－	\bigcirc	\bigcirc	\bigcirc	\times						
	FR－HC2－H30K	－	－	－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times
	FR－HC2－H55K	－	－	－	－	－	－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times
	FR－HC2－H75K	－	－	－	－	－	－	－	－	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc

	Inverter capacity	45K or lower	55K	75K	90K	110K	132K	160K	185K	200K	220K	250K
守	FR－HC2－H110K	－	\bigcirc	0	0	\bigcirc	\times	\times	\times	\times	\times	\times
	FR－HC2－H160K	－	－	－	0	\bigcirc	\bigcirc	0	\times	\times	\times	\times
	FR－HC2－H220K	－	－	－	－	0	\bigcirc	0	0	\bigcirc	\bigcirc	\times
	FR－HC2－H280K	－	－	－	－	－	－	0	0	0	0	0
	FR－HC2－H400K	－	－	－	－	－	－	－	－	\bigcirc	0	\bigcirc
	FR－HC2－H560K	－	－	－	－	－	－	－	－	－	－	－

Inverter capacity		280K	315K	355K	375K	400K	450K	500K	530K	560K
主	FR－HC2－H280K	\bigcirc	\times							
	FR－HC2－H400K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\times	\times	\times	\times
	FR－HC2－H560K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Wiring of several inverters to one converter

Up to ten inverters can be connected to one converter. Be sure to use a converter with the capacity higher than the total capacities of inverters. Additionally, the total capacity of the inverters needs to be higher than half the converter capacity.
If the total inverter capacity is less than half the converter capacity, the converter can be used as a common converter or a regenerative converter. However, it's harmonic suppression effect reduces.
(1) Junction terminals or cross wiring are used to connect several inverters, so carefully select the wire gauge. Start adding the inverter capacities from the furthest inverter.
(2) When connecting several inverters, connect starting with the inverter with the highest capacity.
(3) Installation of a fuse, which corresponds with each motor capacity, is recommended for each inverter when connecting several inverters to one converter. Select a fuse according to the motor capacity.
When using a motor, of which capacity is smaller than the inverter capacity by two ranks or more, select the converter capacity according to the inverter capacity. (Refer to page 24)
(4) Keep the total wiring length within 50 m .

- Main circuit wiring example

The following diagram shows a connection example when connecting six inverters in total (FR-A720-30K, 15K, 5.5K, 2.2K, 1.5 K , and 0.75 K) to FR-HC2-55K.

1) Wire gauge between FR-HC2 and the junction terminal 1 is $100 \mathrm{~mm}^{2}$ according to the FR-HC2 capacity.
2) Wire gauge between the junction terminal 1 and the inverter is $60 \mathrm{~mm}^{2}$ because the inverter capacity is 30 K .
3) Wire gauge between the junction terminal 1 and junction terminal 2 can be calculated as follows: $15+5.5+2.2+1.5+0.75=24.95 \mathrm{~K}$, and 24.95 K rounds up to 30 K , so the wire gauge is $60 \mathrm{~mm}^{2}$.
4)The Wire gauge between the junction terminal 2 and the inverter is $22 \mathrm{~mm}^{2}$ because the inverter capacity is 15 K .
4) Wire gauge between the junction terminal 2 and junction terminal 3 can be calculated as follows: $5.5+2.2+1.5+0.75=9.95 \mathrm{~K}$, and 9.95 K rounds up to 11 K , so the wire gauge is $14 \mathrm{~mm}^{2}$.
5) Wire gauge between the junction terminal 3 and the inverter is $14 \mathrm{~mm}^{2}$ because the inverter capacity is 5.5 K .
6) Wire gauge between the junction terminal 3 and junction terminal 4 can be calculated as follows: $2.2+1.5+0.75=4.45 \mathrm{~K}$, and 4.45 K rounds up to 5.5 K , so the wire gauge is $5.5 \mathrm{~mm}^{2}$.
7) Wire gauge between the junction terminal 4 and the inverter is $2 \mathrm{~mm}^{2}$ because the inverter capacity is 2.2 K .
9)Wire gauge between the junction terminal 4 and junction terminal 5 can be calculated as follows: $1.5+0.75=2.25 \mathrm{~K}$, and 2.25 K rounds down to 2.2 K , so the wire gauge is $2 \mathrm{~mm}^{2}$.
8) Wire gauge between the junction terminal 5 and the inverter is $2 \mathrm{~mm}^{2}$ because the inverter capacity is 1.5 K .
9) Wire gauge between the junction terminal 5 and junction terminal 6 is $2 \mathrm{~mm}^{2}$ because the inverter capacity is 0.75 K .
10) Wire gauge between the junction terminal 6 and the inverter is $2 \mathrm{~mm}^{2}$ because the inverter capacity is 0.75 K .

Converter (FR-HC2)

FR-HC2-75K or lower FR-HC2-H110K or lower

FR-HC2-H160 to H560K
(Dimension drawing example: FR-HC2-H560K)
(Dimension drawing example: FR-HC2-7.5K)

200V class

Model	W	W1	H	H1	D	d
FR-HC2-7.5K	220	195	260	245	170	6
FR-HC2-15K	250	230	400	380	190	10
FR-HC2-30K	325	270	550	530	195	10
FR-HC2-55K	370	300	620	595	250	10
FR-HC2-75K	465	400	620	595	300	12

400 V class

Model	W	W1	H	H1	D	d
FR-HC2-H7.5K, H15K	220	195	300	285	190	6
FR-HC2-H3OK	325	270	550	530	195	10
FR-HC2-H55K	370	300	670	645	250	10
FR-HC2-H75K	325	270	620	595	250	10
FR-HC2-H110K	465	400	620	595	300	12
FR-HC2-H16OK, H220K	498	200	1010	985	380	12
FR-HC2-H28OK	680	300	1010	984	380	12
FR-HC2-H400K, H560K	790	315	1330	1300	440	12

- Reactor 1 (FR-HCL21) (Dimension drawing example : FR-HCL21-7.5K)

(Unit: mm)
- Reactor 2 (FR-HCL22) (Dimension drawing example : FR-HCL22-7.5K)

200V class

Model	$\mathbf{W} *$	$\mathbf{W 1}$	\mathbf{H}	$\mathbf{D} *$	D1	d
FR-HCL22-7.5K	237.5	210 ± 1.5	230	140	110 ± 1.5	M6
FR-HCL22-15K	257.5	230 ± 1.5	260	165	120 ± 1.5	M6
FR-HCL22-30K	342.5	310 ± 1.5	305	180	130 ± 1.5	M8
FR-HCL22-55K	432.5	270 ± 1.5	380	280	240 ± 1.5	M8
FR-HCL22-75K	474	430 ± 2	460	280	128 ± 2	M12

400 V class

Model	$\mathbf{W} *$	$\mathbf{W 1}$	\mathbf{H}	$\mathbf{D} *$	$\mathbf{D 1}$	\mathbf{d}
FR-HCL22-H7.5K	237.5	210 ± 1.5	220	140	110 ± 1.5	M6
FR-HCL22-H15K	257.5	230 ± 1.5	260	165	120 ± 1.5	M6
FR-HCL22-H30K	342.5	310 ± 1.5	300	180	130 ± 1.5	M8
FR-HCL22-H55K	392.5	360 ± 1.5	365	200	130 ± 1.5	M8
FR-HCL22-H75K	430	265 ± 1.5	395	280	200 ± 1.5	M10
FR-HCL22-H110K	500	350 ± 1.5	440	370	260 ± 1.5	M10
FR-HCL22-H160K	560	400 ± 1.5	520	430	290 ± 1.5	M12
FR-HCL22-H22OK	620	400 ± 1.5	620	480	320 ± 1.5	M12
FR-HCL22-H280K	690	500 ± 2	700	560	350 ± 2	M12
FR-HCL22-H400K	632	400 ± 2	675	705	435 ± 10	M12
FR-HCL22-H560K	632	400 ± 2	720	745	475 ± 10	M12

(Unit: mm)

-Outside box (FR-HCB2)*

FR-HCB2-55K or lower
FR-HCB2-H75K or lower
(Dimension drawing example : FR-HCB2-7.5K) (Dimension drawing example : FR-HCB2-75K)

[^1](Unit: mm)
-Filter capacitor (FR-HCC2)

-FR-HCM2

- Inrush current limit resistor (FR-HCR2)

Protruding the heatsink

When installing a converter inside an enclosure, the heat generated in the enclosure can be greatly reduced by protruding the heatsink of the converter.
This installation method is recommended when downsizing the enclosure and such.

-When using a heatsink protrusion attachment (FR-A7CN)

For the FR-HC2-7.5K to 75 K and FR-HC2-H7.5K to H110K, a heatsink can be protruded outside the enclosure using a heatsink protrusion attachment (FR-A7CN). (For the 160K or higher, the attachment is not necessary when the heatsink is to be protruded.)
Refer to the table below for the applicable heatsink protrusion attachments.
(For the details of FR-A7CN, refer to the Instruction Manual of the option FR-A7CN.)
(1) Heatsink protrusion attachments

Model Name	Applicable converter
FR-A7CN02	FR-HC2-7.5K
FR-A7CN03	FR-HC2-H7.5K, H15K
FR-A7CN04	FR-HC2-15K
FR-A7CN05	FR-HC2-30K
	FR-HC2-H30K
FR-A7CN09	FR-HC2-H5K
FR-HC2-H110K	

* For a combination other than above, please contact your sales representative.
(2) Drawing after attachment installation (when used with the FR-A7CN)

(3) Panel cut dimension drawing (when used with the FR-A7CN)

FR-A7CN05

FR-A7CN09

FR-A7CN04

- Heatsink protrusion for 160K or higher

(1) Enclosure cut

Cut the enclosure according to the capacity of the converter.

(2) Moving and removing the back installation frames

- FR-HC2-H160K to H280K

One installation frame is attached to each of the upper and lower parts of the converter. Change the position of the rear side installation frame on the upper and lower sides of the converter to the front side as shown on the right. When changing the installation frames, make sure that the installation orientation is correct.

(3) Installing the converter to the enclosure

Protrude the heatsink of the converter from the installation enclosure, and secure the converter using the top and bottom installation frames.

* The enclosure enclosing FR-HC2-H160K and higher has a finger guard on its back. The thickness of the enclosure should be less than $10 \mathrm{~mm}(*)$, and do not place anything around the finger guard to avoid contact with the finger guard.

Converter model	D1
FR-HC2-H160K, H220K	185
FR-HC2-H280K to H560K	184

NOTE

- Protruding area contains a cooling fan, so it cannot be used in the environment where water drops, oil mist, dust and other substances exist.
- Foreign substances such as screws and dust must be prevented to enter in the converter or the cooling fan section.

Before making connections, check the cable size and connection method to each device in the Instruction Manual.

- FR-HC2-7.5K to 75K, FR-HC2-H7.5K to H220K

- FR-HC2-H280K

*1 Do not connect anything to the inverter power input terminals R/L1, S/L2 and T/L3. Incorrect connection will damage the inverter. Connecting opposite polarity of terminals P and N will damage the converter and the inverter.
*2 Use input terminal function selection to assign the terminal used for X10 signal. (Refer to the Inverter Instruction Manual.)
*3 The power phases of the terminals R4/L14, S4/L24, and T4/L34 and the terminals R/L1, S/L2, and T/L3 must be matched.
*4 Do not insert MCCB between terminals P and $N(P$ and P, N and N).
*5 Always connect the terminal R/L1, S/L2, T/L3 of the converter to the power supply. If the inverter is operated without connecting the terminals to the power supply, the converter will be damaged.
*6 Do not insert MCCB or MC between (1) (terminal R/L1, S/L2, and T/L3 input of the Reactor 1) and (2) (terminal R4/L14, S4/L24, and T4/L34 input of the converter) of the above diagram. It will not operate properly.
*7 Securely perform grounding (earthing) by using the grounding (earthing) terminal.
*8 Installation of a fuse is recommended. (Refer to page 24)
*9 The MC power supply stepdown transformer is only equipped in the 400 V class models.

- FR-HC2-H400K, H560K

*1 Do not connect anything to the inverter power input terminals R/L1, S/L2, and T/L3. Incorrect connection will damage the inverter. Connecting opposite polarity of terminals P and N will damage the converter and the inverter.
*2 Use input terminal function selection to assign the terminal used for X10 signal. (Refer to the Inverter Instruction Manual.)
*3 The power phases of the terminals R4/L14, S4/L24, and T4/L34 and the terminals R/L1, S/L2, and T/L3 must be matched.
*4 Do not insert MCCB between terminals $\mathrm{P} /+$ and $\mathrm{N} /-(\mathrm{P}$ and P, N and N).
*5 Always connect the terminal R, S, and T of the converter to the power supply. If the inverter is operated without connecting the terminals to the power supply, the converter will be damaged.
*6 Do not insert MCCB or MC between (1) (terminal R/L1, S/L2, T/L3 input of the converter) and (2) (terminal R4/L14, S4/L24, T4/L34 input of the converter) of the above diagram. It will not operate properly (except for the inrush current limit MC).
*7 Securely perform grounding (earthing) by using the grounding (earthing) terminal.
*8 Installation of a fuse is recommended. (Refer to page 24)
*9 The number of filter capacitors and filter capacitor alarm detectors differs by the capacity. Connect two sets of filter capacitors and filter capacitor alarm detectors for H400K, and connect three sets for H560K.

NOTE

When connecting the converter to the inverter, match the control logic (sink logic (initial setting)/source logic). The converter does not operate properly if the control logic is different.
(Refer to Instruction Manual for the switching of the control logic. Refer to Inverter Instruction Manual for the switching of the control logic of the inverter.)

- Keep the wiring length between terminals as short as possible.

When sudden large distortion or depression of power supply occurs, reactor may generate abnormal acoustic noise. This acoustic noise is caused by the power supply fault and not by the damage of the converter.
Do not connect the DC reactor to the inverter when using a high power factor converter.

- When using a sine wave filter with FR-HC2 (75K or higher), select MT-BSL-HC as a reactor for the sine wave filter.

Type		Terminal Symbol	Terminal Name	Description			
		$\begin{gathered} \text { R/L1, S/L2, } \\ \text { T/L3 } \end{gathered}$	Power input	These terminals are used to detect power phase and power voltage, and to input control power. Connect them to the commercial power supply. If the inverter is operated without connecting them to the commercial power supply, the converter will be damaged.			
		$\begin{aligned} & \text { R4/L14, } \\ & \text { S4/L24, } \\ & \text { T4/L34 } \end{aligned}$	Power input	Connect them to the reactor 2. The voltage phases of the terminals R4/L14, S4/L24 and T4/L34 and the terminals R/L1, S/L2 and T/L3 must be matched. If these terminals are not connected correctly, the converter does not operate properly.			
		$\begin{aligned} & \text { R1/L11, } \\ & \text { S1/L21 } \end{aligned}$	Power supply for control circuit	These terminals are connected to the phase detection terminals R/L1 and S/L2 in the initial status. To retain the fault display and fault output, remove the jumpers (cables) and apply external power to these terminals.			
		P/+, N/-	Inverter connection	Connect them to the inverter terminals P/+ and $\mathrm{N} /$-.			
		$\stackrel{1}{\square}$	Earth (Ground)	For earthing (grounding) the converter chassis. It must be earthed (grounded).			
		RES	Reset	Used to reset fault output provided when a fault occurs. Turn ON the RES signal for more than 0.1 s, then turn it OFF.		Input resistance : $4.7 \mathrm{k} \Omega$ Voltage at opening: 21 to 27VDC Contacts at short-circuited: 4 to 6mADC	
		SOF	Converter stop	Turning ON the SOF signal stops the converter. RDY signal turns OFF, limit MC turns ON			
		ROH	Inrush current limit resistor overheat protection	200 V class 7.5K to 75 K 400 V class 7.5 K to 220 K	Connect this terminal to terminal ROH1 of the outside box (FRHCB2). The ROH signal is input to stop the converter operation when the limit resistor may overheat.		
		400 V class 280K to 560 K		An auxiliary contact (NO contact) of a limit resistor MC, a limit resistor (with thermostat) (NC contact), and a filter capacitor alarm detector (NC contact, 400 K and 560 K) are connected to stop the converter operation when overheating of the limit resistor becomes a concern and when a filter capacitor is faulty.			
		X1	Monitor switching	FM and AM output or PU monitor display can be switched by a combination of ON/ OFF of X 1 signal and X 2 signal.			
		X2					
		SD	Contact input common (sink) (initial setting)	Common terminal for contact input terminal (sink logic) and terminal FM.		-	
		External transistor common (source)	When connecting the transistor output (open collector output), such as a programmable controller in source logic, connect the external power supply common for transistor output to this terminal to prevent a malfunction caused by undesirable currents.				
		24VDC power supply common	Common output terminal for 24VDC 0.1A power supply (terminal PC). Isolated from terminals 5, SE and SE2.				
		PC	External transistor common (sink) (initial setting)	When connecting the transistor output (open collector output), such as a programmable controller in sink logic, connect the external power supply common for transistor output to this terminal to prevent a malfunction caused by undesirable currents.		Power supply voltage range 19.2 to 28.8 VDC Permissible load current 100 mA	
		External transistor common (sink) (initial setting)	Common terminal for contact input terminal (source logic)				
		24VDC power supply	Can be used as 24VDC 0.1A power supply.				
$\begin{aligned} & \overline{0} \\ & .0 \\ & .0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0.3 \\ & 0.0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			RDY	Inverter run enable signal	Turns ON at ala Connect this te assigned to in th Turning ON RD RYD signal OF RYD signal ON	arm occurrence and reset (RES) signal input. erminal to the terminal MRS or a terminal where the X 10 signal is the inverter. PY signal stops the inverter. F: Inverter can run N: Inverter cannot run	Permissible load 24VDC (27VDC maximum) 0.1A (A voltage drop is 2.8 V maximum when the signal is ON .)
			CVO	During converter run	Signal is output	t during harmonic suppression.	
		Y1	Multi-purpose output 1	Output item: O Turns ON at an	L signal (overload alarm) (initial setting) occurrence of overcurrent (150% overload or more).		
		Y2	Multi-purpose output 2	Output item: PHS signal (power phase detection) (initial setting) Turns ON when power phase detection is locked.			
		RSO	Converter reset	Turns ON at a converter reset (RES-ON). Connect this terminal to the inverter terminal of which RES signal is assigned to. Reset the connected inverter by turning ON the RSO.			
		SE	Open collector output common	Common terminal for the terminals RDY, CVO, OL, Y1, Y2 Connect it to the inverter terminal SD (sink logic).		-	
	\%	FM	For meter	Select one monitor item from multiple monitor items such as input current and bus voltage. Not output during a converter reset. The output signal is proportional to the magnitude of the corresponding monitoring item. Monitor item can be switched by ON/OFF of terminals X1 and X2.		Permissible load current 2 mA At rated input current of the converter: 1440 pulses/s	
		AM	Analog signal output			Output signal 0 to 10 VDC Permissible load current 1 mA Load impedance $10 \mathrm{k} \Omega$	
		5	Analog signal output common	Common terminal for analog signal output		-	
	$\begin{aligned} & \frac{\underset{\sigma}{\infty}}{\boxed{\otimes}} \end{aligned}$	A, B, C	Fault contact	1 changeover contact output indicates that the converter's protective function is activated and the output is stopped. Fault: No conduction across B and C (Conduction across A and C), Normal: Conduction across B and C (No conduction across A and C)		Contact capacity AC230V 0.3 A (Power factor $=0.4$) 30VDC output 0.3 A	
		88R, 88S	MC connection terminal	Controls the MC for the limit resistor.		-	

Type		Terminal Symbol	Terminal Name	Description	
	$\frac{\grave{0}}{\mathbf{O}}$	Y3	Multi-purpose output 3	Output item: Y5 signal (output voltage match) (initial setting) Turns ON when the detected bus voltage equals to the commanded bus voltage.	Permissible load: 24 VDC 0.1 A
	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\circ}{\circ} \end{aligned}$	SE2	Open collector output common	Common terminal for terminal Y3	-
		-	PU connector	With the PU connector, communication can be made through RS-485. (for conne -Conforming standard : EIA-485 (RS-485) -Transmission format : Multidrop -Communication speed : 4800 to 38400 bps -Overall length : 500m	on on a 1:1 basis only)

NOTE

- If the inverter is operated without connecting the terminals R/L1, S/L2, T/L3 of the converter to the power supply, the converter will be damaged.
- \square indicates that terminal functions can be selected using Pr. 3 to Pr. 7 (input terminal function selection) and Pr. 11 to Pr. 16 (output terminal function selection).

0 (D) REMARKS

© indicates simple mode parameters.
The parameters shaded in \square allow their settings to be changed during operation even if "1" (write disabled) is set to Pr. 77 Parameter write selection.

Parameter	Name	Range	Increments	Initial value	Customer setting
(0) 0	Simple mode selection	0,9999	1	0	
(-1	Maximum power supply frequency	60 Hz (Read only)	-	60 Hz	
© 2	Minimum power supply frequency	50 Hz (Read only)	-	50 Hz	
3	ROH terminal function selection	0 to 5, 9999	1	5	
4	SOF terminal function selection		1	0	
5	X1 terminal function selection		1	1	
6	X2 terminal function selection		1	2	
7	RES terminal function selection		1	3	
8	SOF input selection	0, 1, 2	1	0	
9	OH input selection	0,1	1	0	
10	RDY signal logic selection	0,100	1	100	
11	RSO terminal function selection	0 to $16,98,99,100$ to 116 , 198, 199, 9999	1	1	
12	CVO terminal function selection		1	2	
© 13	Y 1 terminal function selection		1	3	
(0) 14	Y2 terminal function selection		1	4	
© 15	Y3 terminal function selection		1	5	
16	ABC terminal function selection		1	99	
(0) 22	Current limit level	0 to 220\%	0.1\%	150\%	
23	Current limit level (regenerative)	0 to 220\%, 9999	0.1\%	9999	
24	OL signal output timer	0 to 25s, 9999	0.1s	Os	
25	Input current detection level	0 to 220\%	0.1\%	150\%	
26	Input current detection signal delay time	0 to 10s	0.1 s	0s	
27	Input current detection signal retention time	0 to 10s, 9999	0.1 s	0.1 s	
28	Input current detection operation selection	0, 1	1	0	
29	Zero current detection level	0 to 220\%	0.1\%	5\%	
30	Zero current detection time	0 to 1s	0.01s	0.5 s	
31	Life alarm status display	0 to 15 (Read only)	1	0	
32	Inrush current limit circuit life display	0 to 100\% (Read only)	1\%	100\%	
33	Control circuit capacitor life display	0 to 100\% (Read only)	1\%	100\%	
34	Maintenance timer	0 (1 to 9998)	1	0	
35	Maintenance timer alarm output set time	0 to 9998, 9999	1	9999	
36	Cooling fan operation selection	0, 1	1	1	
44	Instantaneous power failure detection signal clear	0,9999	1	9999	
45	AM output filter	0 to 5s	0.01s	0.01s	
46	Watt-hour meter clear	0, 10, 9999	1	9999	
47	Energization time carrying-over times	Read only	1	0	
48	Cumulative power monitor digit shifted times	0 to 4, 9999	1	9999	
49	Power supply frequency monitoring reference	45 Hz to 65 Hz	0.01 Hz	60 Hz	
(0) 50	AM terminal function selection	$1 \text { to } 3,5,6,7,21 \text {, }$ 1111 to 4444	1	1234	
© 51	Input power monitoring reference	0 to $100 \mathrm{~kW} / 0$ to 3600 kW *1	$\begin{aligned} & \hline 0.01 \mathrm{~kW} / \\ & 0.1 \mathrm{~kW} * 1 \end{aligned}$	Rated power	
(0) 52	DU/PU main display data selection	$\begin{aligned} & 0,5 \text { to } 10,25, \\ & 1111 \text { to } 4444 \end{aligned}$	1	1234	
© 53	Input voltage monitoring reference	0 to 500V	0.1 V	$220 \mathrm{~V} / 440 \mathrm{~V} * 2$	
(0) 54	FM terminal function selection	$\begin{aligned} & 1 \text { to } 3,5,6,7,21 \text {, } \\ & 1111 \text { to } 4444 \end{aligned}$	1	1234	
(0) 55	Bus voltage monitoring reference	0 to 1000V	0.1 V	$340 \mathrm{~V} / 680 \mathrm{~V}$ *2	
(0) 56	Current monitoring reference	0 to 500A/0 to 3600A*1	0.01A/0.1A *1	Rated current	
© 57	Restart selection	0,9999	1	9999	

Parameter	Name	Range	Increments	Initial value	Customer setting
58	Free parameter 1	0 to 9999	1	9999	
59	Free parameter 2	0 to 9999	1	9999	
61	Key lock operation selection	0, 10	1	0	
© 65	Retry selection	0, 1, 2, 3, 4	1	0	
© 67	Number of retries at fault occurrence	0 to 10, 101 to 110	1	0	
© 68	Retry waiting time	0.1 to 360s	0.1s	1s	
© 69	Retry count display erase	0	1	0	
75	Reset selection/disconnected PU detection/ PU stop selection	0 to 3, 14 to 17	1	14	
© 77	Parameter write selection	1,2	1	2	
80	Voltage control proportional gain	0 to 1000\%	1\%	100\%	
81	Voltage control integral gain	0 to 1000\%	1\%	100\%	
82	Current control proportional gain	0 to 200\%	1\%	100\%	
83	Current control integral gain	0 to 200\%	1\%	100\%	
117	PU communication station number	0 to 31	1	0	
118	PU communication speed	48, 96, 192, 384	1	192	
119	PU communication stop bit length	0, 1, 10, 11	1	1	
120	PU communication parity check	0, 1, 2	1	2	
121	Number of PU communication retries	0 to 10, 9999	1	1	
123	PU communication waiting time setting	0 to 150ms, 9999	1 ms	9999	
124	PU communication CR/LF selection	0, 1, 2	1	1	
© 145	PU display language selection	0 to 7	1	0	
168					
169	Parameter for manufacturer setting. Do not set.				
269					
342	Communication EEPROM write selection	0,1	1	0	
500 *3	Communication error execution waiting time	0 to 999.8 s	0.1 s	Os	
501 *	Communication error occurrence count display	0	1	0	
502 *	Stop mode selection at communication error	0,3	1	0	
$\begin{gathered} 542 \\ * 3, * 4, * 5 \end{gathered}$	Communication station number (CC-Link)	1 to 64	1	1	
$\begin{gathered} 543 \\ * 3, * 4, * 5 \end{gathered}$	Baud rate (CC-Link)	0 to 4	1	0	
$\begin{aligned} & 544 \\ & * 3, * 4 \end{aligned}$	CC-Link extended setting	0, 1, 12	1	0	
C0(900) *6	FM terminal calibration	-	-	-	
C1(901)*6	AM terminal calibration	-	-	-	
989	Parameter copy alarm release	10,100	1	10/100 *1	
990	PU buzzer control	0,1	1	1	
991	PU contrast adjustment	0 to 63	1	58	
Pr.CL	Parameter clear	0, 1	1	0	
ALLC	All parameter clear	0,1	1	0	
Er.CL	Fault history clear	0,1	1	0	
PCPY	Parameter copy	0, 1, 2, 3	1	0	

*1 Differ according to capacities. (55K or lower/75K or higher)
*2 Differs according to the voltage class. (200V class/400V class)
*3 Parameters which can be set when the plug-in option (FR-A7NC) is mounted.
*4 The setting is reflected after converter reset or at the next power-ON.
*5 "L.ERR" LED on FR-A7NC flickers when a setting is changed. If the converter is reset, the setting is reflected and LED turns off
*6 The parameter number in parentheses is the one for use with the parameter unit (FR-PU07).

When a fault occurs in the converter，the protective function activates to trip the converter，and the PU display automatically changes to one of the following fault or alarm indications．

Operation Panel Indication			Name
Error message ＊2	E－－	E－－－	Faults history
	M18！－－	HOLD	Operation panel lock
	Eri	Er1	Parameter write error
	$\begin{array}{r} \text { FI~ } \\ \text { Fi } \end{array}$	rE1 to 4	Copy operation fault
	$E \sim$ F。	Err．	Error
Warning*3	CiO_{10}	OL	Overload signal detection
	『゙こ	PS	PU stop
	1 ir	TH	Electronic thermal relay pre－alarm
	${ }_{117}$	MT	Maintenance signal output＊7
	9	CP	Parameter copy
	Eit	SL	Power supply not detected
Alarm＊4	F	FN	Fan fault
Fault＊5	E． 0°	E．OC2	Overcurrent trip
	E．i゙心だ	E．OV2	Overvoltage trip
	$E 0^{-15}$	E．THT	Converter overload trip（electronic thermal relay function）＊1
	E！	E．FIN	Fin overheat
	E．F\％	E．IPF	Instantaneous power failure
	E．Ein！	E．UVT	Undervoltage
	E． 18	E．ILF	Input phase loss
	E．EMi	E．OHT	External thermal relay operation＊6＊7
		E． 2	HC2 dedicated board disconnection
	E． $\bar{\square}$	E． 3	Option fault
	E．10ご	E．OP3	Communication option fault
	$E F$	E．PE	Parameter storage device fault（control circuit board）
	E．Eに	E．PE2	Parameter storage device fault（main circuit board）
	E．	E．PUE	PU disconnection＊7
	$E .5$	E．RET	Retry count excess＊7
	$\begin{array}{ll} E & 5 \\ E & B \\ E . B & 1 \\ E & 1 \end{array}$	E． 6 E． 7 CPU	CPU fault
	E．	E． 8	Input power supply fault 1
	E． 9	E． 9	Input power supply fault 2
	E．EF	E．CTE	Operation panel power supply short circuit，RS－485 terminal power supply short circuit
	E，ごー	E．P24	24VDC power output short circuit
		E．CDO	Input current detection value exceeded＊7
	E！İI－1	E．IOH	Inrush current limit circuit fault
	E．İ	E． 13	Internal circuit fault

[^2]
Option List

Name			Type	Applications, Specifications, etc.	Applicable converter
	(CC-Link communication	FR-A7NC	Converter operation, monitoring, and parameter setting can be commanded from a programmable controller.	Shared among all models
	Parameter unit (8 languages)		FR-PU07	Interactive parameter unit with LCD display	Shared among all models
	Parameter unit with battery pack		FR-PU07BB	Parameter unit enables parameter setting without supplying power to the converter.	Shared among all models
	Parameter unit connection cable		FR-CB20■	Cable for connection of operation panel or parameter unit indicates a cable length. ($1 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}$)	Shared among all models
	Operation panel connection connector		FR-ADP	Connector to connect the operation panel (FR-DU07-CNV) and connection cable	Shared among all models
	Heatsink protrusion attachment		$\begin{aligned} & \hline \text { FR-A7CN } \\ & 02 \text { to } 05,09 \end{aligned}$	Attachment for protruding the converter heatsink at the back of the enclosure. Refer to page 13 for the enclosure cut dimensions.	According to capacities
	Radio noise filter		FR-BIF(H)	For radio noise reduction (connect to the input side)	Shared among all models
	Line noise filter		FR-BSF01/ FR-BLF	For line noise reduction	Shared among all models

Peripheral devices/cable size list

- cable size*1

-200V class

Model	FR-HC2- \square		FR-HCB2- \square	FR-HCL21- \square	FR-HCL22- \square
	$\begin{gathered} \text { R4/L14, S4/L24, } \\ \text { T4/L34 } \end{gathered}$	$\begin{gathered} \mathrm{P} /+, \mathrm{N} /- \\ \quad * 2 \end{gathered}$	$\begin{aligned} & \text { R2/L12, S2/L22, T2/L32 } \\ & \text { R3/L13, S3/L23, T3/L33 } \end{aligned}$	$\begin{gathered} \text { R/L1, S/L2, T/L3 } \\ \text { R2/L12, S2/L22, T2/L32 } \end{gathered}$	R3/L13, S3/L23, T3/L33 R4/L14, S4/L24, T4/L34
7.5K	8	5.5	8	8	8
15K	22	14	22	22	22
30K	60	38	60	60	60
55K	100	100	125	125	125
75K	100	100	100	100	100

-400V class

Model	FR-HC2- \square		FR-HCB2/FR-HCC2- \square	FR-HCL21- \square	FR-HCL22- \square
	R4/L14, S4/L24, T4/L34	$\begin{gathered} \text { P/+, N/- } \\ \quad * 2 \end{gathered}$	$\begin{aligned} & \text { R2/L12, S2/L22, T2/L32 } \\ & \text { R3/L13, S3/L23, T3/L33 } \end{aligned}$	R/L1, S/L2, T/L3 R2/L12, S2/L22, T2/L32	R3/L13, S3/L23, T3/L33 R4/L14, S4/L24, T4/L34
H7.5K	3.5	2	3.5	3.5	3.5
H15K	5.5	5.5	5.5	5.5	5.5
H30K	22	14	22	22	22
H55K	60	38	60	60	60
H75K	38	38	38	38	38
H110K	60	60	60	60	60
H160K	100	125	100	100	100
H220K	150	2×100	150	150	150
H280K	200	2×125	60	200	200
H400K	2×200	2×200	60	2×200	2×200
H560K	2×250	3×250	38	2×250	2×250

[^3]
- Circuit breakers and magnetic contactors

Check the model of the converter and select peripheral devices according to the capacity. Refer to the table below to prepare appropriate peripheral devices.
-200V class

Converter Model	Moulded Case Circuit Breaker (MCCB) *1 or Earth Leakage Circuit Breaker (ELB) *2 (NF, NV type)	Magnetic Contactor (MC)
FR-HC2-7.5K	50 A	S-N25
FR-HC2-15K	75 A	S-N50
FR-HC2-30K	150 A	S-N80
FR-HC2-55K	300 A	S-N180
FR-HC2-75K	350 A	S-N300

-400V class

Converter Model	Moulded Case Circuit Breaker (MCCB) *1 or Earth Leakage Circuit Breaker (ELB) *2 (NF, NV type)	Magnetic Contactor (MC) *3
FR-HC2-H7.5K	30A	S-N18
FR-HC2-H15K	50A	S-N20
FR-HC2-H30K	75A	S-N35
FR-HC2-H55K	150A	S-N80
FR-HC2-H75K	175A	S-N95
FR-HC2-H110K	250A	S-N180
FR-HC2-H160K	400A	S-N300
FR-HC2-H220K	500A	S-N400
FR-HC2-H280K	700A	S-N600
FR-HC2-H400K	900A	S-N800
FR-HC2-H560K	1500A	S-N400 (three in parallel)

*1 - Select an NFB according to the power supply capacity. -Install one NFB per converter.
*2 For the use in the United States or Canada, provide the appropriate UL and cUL listed fuse that is suitable for branch circuit protection. (Refer to the instruction manual)
*3 Magnetic contactor is selected based on the AC-1 class.The electrical durability of magnetic contactor is 100,000 times. When the magnetic contactor is used for emergency stop during motor driving, the electrical durability is 25 times.
When using the MC for emergency stop during motor driving or using on the motor side during commercial-power supply operation, select the MC with class AC-3 rated current for the motor rated current.

NOTE

When the MCCB on the converter input side trips, check for the wiring fault (short circuit), damage to internal parts of the converter, etc. Identify the cause of the trip, then remove the cause and power ON the breaker.

- Configure a system where the magnetic contactor at the converter input side shuts off the power supply at a failure of the converter or the connected inverter. (The converter does not shut off the power supply by itself.) Failure to do so may overheat and burn the resistors in the converter and the connected inverter.

-Fuse

Installation of a fuse is recommended between a high power factor converter and an inverter.
Select a fuse according to the capacity of the connected motor. When using a motor, of which the capacity is smaller than the inverter capacity by two ranks or more, select the fuse with the capacity that is one rank lower than the inverter capacity. Select a fuse from the table below, and install it to both of the P side and the N side between the high power factor converter and the inverter.
[Fuse selection table]

$\begin{gathered} \text { Motor } \\ \text { capacity } \\ (\mathrm{kW}) \\ \hline \end{gathered}$	200V class		400V class	
	Fuse rating (A)	Model *1	Fuse rating (A)	Model *1
0.1	5	6.900 CP GR 10.380005 *2	-	-
0.2	10	6.900 CP GR 10.380010 *2	-	-
0.4	16	6.900 CP GR 10.380016 *2	12.5	6.900 CP GR 10.38 0012.5 *2
0.75	20	6.900 CP GR 10.380020 *2	16	6.900 CP GR 10.380016 *2
1.5	25	6.900 CP GR 10.380025 *2	16	6.900 CP GR 10.380016 *2
2.2	50	6.9 URD 30 TTF 0050	20	6.900 CP GR 10.380020 *2
3.7	63	6.9 URD 30 TTF 0063	30	6.900 CP GR 10.380030 *2
5.5	100	6.9 URD 30 TTF 0100	50	6.9 URD 30 TTF 0050
7.5	125	6.9 URD 30 TTF 0125	50	6.9 URD 30 TTF 0050
11	160	6.9 URD 30 TTF 0160	80	6.9 URD 30 TTF 0080
15	200	6.9 URD 30 TTF 0200	125	6.9 URD 30 TTF 0125
18.5	250	6.9 URD 30 TTF 0250	125	6.9 URD 30 TTF 0125
22	315	6.9 URD 30 TTF 0315	160	6.9 URD 30 TTF 0160
30	400	6.9 URD 30 TTF 0400	200	6.9 URD 30 TTF 0200
37	500	6.9 URD 30 TTF 0500	250	6.9 URD 30 TTF 0250
45	630	6.9 URD 31 TTF 0630	315	6.9 URD 30 TTF 0315
55	700	6.9 URD 31 TTF 0700	350	6.9 URD 30 TTF 0350
75	800	6.9 URD 31 TTF 0800	450	6.9 URD 30 TTF 0450
90	-	-	500	6.9 URD 30 TTF 0500
110	-	-	550	6.9 URD 31 TTF 0550
132	-	-	630	6.9 URD 31 TTF 0630
160	-	-	800	6.9 URD 31 TTF 0800
185	-	-	900	6.9 URD 32 TTF 0900
220	-	-	1000	6.9 URD 32 TTF 1000 or 6.9 URD 31 TTF 0630×2 in parallel *3
250	-	-	1250	6.9 URD 33 TTF 1250 or 6.9 URD 31 TTF 0700×2 in parallel *3
280	-	-	1400	6.9 URD 33 TTF 1400 or 6.9 URD 31 TTF 0800×2 in parallel *3
315	-	-	1600	6.9 URD 232 TTF 1600 or 6.9 URD 31 TTF 0800×2 in parallel $* 3$
355	-	-	1800	6.9 URD 232 TTF 1800 or 6.9 URD 32 TTF 0900×2 in parallel *3
400	-	-	1800	6.9 URD 232 TTF 1800 or 6.9 URD 32 TTF 0900×2 in parallel *3
450	-	-	2500	6.9 URD 33 TTF 1250×2 in parallel $* 3$
500	-	-	2700	6.9 URD 32 TTF 0900×3 in parallel $* 3$
560	-	-	2700	6.9 URD 32 TTF 0900×3 in parallel $* 3$

*1 Manufacturer: Mersen Japan K.K.
Contact: Sun-Wa Technos Corporation
*2 For fuse holders (2-pole type), use US102 (no blowout indicator) or US1021 (with blowout indicator).
*3 When installing several fuses in parallel, leave 12 mm or more between the fuses.

NOTE

Install a fuse across terminal P/+ of the inverter and the converter and across terminal $\mathrm{N} /$ - of the inverter and the converter. (Refer to page 8)
[Estimated lifespan of fuse]

Part Name	Estimated lifespan*	Replacement method
Fuse	10 years	Replace with a new one

[^4]
NOTE

- If the fuse melts down, wiring failure such as a short circuit may be the cause. Identify the problem and fix it before replacing the fuse.

\. SAFETY INSTRUCTIONS

- To use the product safely and correctly, make sure to read "the Instruction Manual" before using the product.
- This product has not been designed or manufactured for use with any equipment or system operated under life-threatening conditions.
- Please contact our sales office when you are considering using this product in special applications such as passenger mobile, medical, aerospace, nuclear, power or undersea relay equipment or system.
- Although this product was manufactured under conditions of strict quality control, you are strongly advised to install safety devices to prevent serious accidents when it is used in facilities where breakdowns of the product or other failures are likely to cause a serious accident.
- Do not use this product for a load other than dedicated inverters.

Installation Precautions

Wiring distance

-For the wiring distance between the high power factor converter (FR-HC2) and inverter, refer to the following table.

Across terminals P and P / terminals N and N	50 m or shorter
Other control signal lines	30 m or shorter

- The total wiring distance between the high power factor converter (FR-HC2) and standard accessories must be 30 m or shorter. For 280 K or higher, refer to the Instruction Manual.)

Reactor installation at power supply side

The terminals R/L1, S/L2, and T/L3 of the high power factor converter are control terminals to detect power phases of the power supply. When wiring, the voltage phases of terminals R4/L14, S4/L24, and T4/L34 and the voltage phases of terminals R/L1, S/L2, and T/L3 must be matched. Failure to connect these terminals correctly will lead to an improper operation of the high power factor converter.

- If the inverter is operated without connecting the terminals R/L1, S/L2, and T/L3 of the high power factor converter to the power supply, the high power factor converter will be damaged.

Operating Precautions

The Guideline treats the converter as a no-harmonicemitting device ($\mathrm{K} 5=0$), but the harmonic component is not completely 0 .

Selection Precautions

Connectable inverter

- Connect to the inverter that can accept DC inputs.
- For the MELTRAC, FR-A500L, and FR-F500L series inverters, make sure the connecting inverter is compatible with the high power factor converter. Connection with an incompatible inverter will damage the inverter and the converter.

Sine wave filter selection precautions

- When using a sine wave filter with FR-HC2 (75K or higher), use MT-BSL-HC for the sine wave filter.

Peripheral Device Selection Precautions

Selection and installation of the moulded case circuit breaker

Install a moulded case circuit breaker (MCCB) on the power receiving side to protect the wiring at the converter's input side. For the MCCB selection, refer to page 23. (Refer to the materials related to the breaker.) For earth leakage circuit breakers, use the harmonic/surge compatible model provided by Mitsubishi.

Electromagnetic interference

Since the high power factor converter chops input voltage at high carrier frequency, it generates noises. If these noises cause peripheral devices to malfunction, countermeasures should be taken to suppress noises (EMI measures). The EMI measures differ depending on the noise transmission paths.

- The FR-BIF radio noise filter is useful to suppress noises on AM radio broadcasting.
- The FR-BSF01/FR-BLF line noise filters are useful for preventing malfunction of sensors, etc.
- For the noise emitted from power cables, take a distance of 30 cm (at least 10 cm) from the power cables, and use shielded twisted pair cables for signal cables. Do not earth (ground) the shield. Connect the shield to one common terminal.

EMI measure example

1. Gratis warranty period and coverage

[Gratis warranty period]
Note that an installation period of less than one year after installation in your company or your customer's premises or a period of less than18 months (counted from the date of production) after shipment from our company, whichever is shorter, is selected.

[Coverage]

(1) Diagnosis of failure

As a general rule, diagnosis of failure is done on site by the customer.
However, Mitsubishi or Mitsubishi service network can perform this service for an agreed upon fee upon the customer's request.
There will be no charges if the cause of the breakdown is found to be the fault of Mitsubishi.
(2) Breakdown repairs

There will be a charge for breakdown repairs, exchange replacements and on site visits for the following four conditions, otherwise there will be a charge.

1) Breakdowns due to improper storage, handling, careless accident, software or hardware design by your company and your customers.
2) Breakdowns due to modifications of the product without the consent of the manufacturer.
3) Breakdowns resulting from using the product outside the specified specifications of the product.
4) Breakdowns that are outside the terms of warranty.

Since the above services are limited to Japan, diagnosis of failures, etc. are not performed abroad.
If you desire the after service abroad, please register with Mitsubishi. For details, consult us in advance.
2. Exclusion of opportunity loss from warranty liability

Regardless of the gratis warranty term, compensation to opportunity loss incurred to your company or your customers by failures of Mitsubishi products and compensation for damages to products other than Mitsubishi products and other services are not covered under warranty.
3. Repair period after production is discontinued

Mitsubishi shall accept product repairs for seven years after production of the product is discontinued.

4. Terms of delivery

In regard to the standard product, Mitsubishi shall deliver the standard product without application settings or adjustments to the customer and Mitsubishi is not liable for on site adjustment or test run of the product.

Related Factory Automation Products

Contactors and Motor Starters | MS-N Series

Compact body with full satisfaction

* Lineup from 10A to 800A frames. Available in wide range of applications.
* Conforming to various international specifications as standard.
* Equipped with safe open function contact, applicable to circuits in "machine safety category 4".
* CAN terminals achieved wiring rationalization and safety improvement.

\triangle Safety Warning

To ensure proper use of the products listed in this catalog, please be sure to read the instruction manual prior to use.

[^0]: *1 Can be displayed only on the operation panel (FR-DU07-CNV).
 Can be displayed only on the option parameter unit (FR-PU07).
 *3 Temperature applicable for a short time, e.g. in transit.
 *4 This protective function is not available in the initial status.
 *5 This protective function is enabled when FR-A7NC is mounted.
 *6 $2.9 \mathrm{~m} / \mathrm{s}^{2}$ or less for the 160 K or higher.

[^1]: * Peripheral devices are separately provided for the FR-HC2-H280K or higher (not provided as the outside box).

[^2]: ＊1 Resetting the converter initializes the cumulative value of the internal thermal relay．
 ＊2 The error message shows an operational error．The converter does not trip．
 ＊3 Warnings are messages given before faults occur．The converter does not trip
 ＊4 Alarms warn the operator of failures with output signals．The converter does not trip．
 When faults occur，the protective functions are activated to trip the converter and output the fault signals．
 Assign the OH signal to one of Pr． 3 to Pr． 7 （Input terminal function selection）to enable the external thermal relay operation． This protective function is not available in the initial status．

[^3]: $* 1$ For the 55 K or lower, the cable size is that of the cable (HIV cable (600V class 2 vinyl-insulated cable) etc.) with continuous maximum permissible temperature of $75^{\circ} \mathrm{C}$. It assumes that the surrounding air temperature is $50^{\circ} \mathrm{C}$ or less and the wiring distance is 20 m or less.
 For the 75 K or higher, the recommended cable size is that of the cable (LMFC (heat resistant flexible cross-linked polyethylene insulated cable) etc.) with continuous maximum permissible temperature of $90^{\circ} \mathrm{C}$. It assumes that the surrounding air temperature is $50^{\circ} \mathrm{C}$ or less and wiring is performed in an enclosure.
 *2 If a cable thinner than the recommended cable size is used, it may not be protected by the DC fuse. (Refer to page 24 for the fuse selection.)

[^4]: * Estimated lifespan for when the yearly average surrounding air temperature is 50?C (without corrosive gas, flammable gas, oil mist, dust and dirt etc.)

