V530-R160E, V530-R160EP

A code reader that handles dot peen markings!

OMRON, in its pursuit of direct marking, now presents a 2-dimensional code reader that is ideal for reading dot peen markings.

Integrating Objects and Information

Innovate Production by Integrating Objects andinformation 3

Read information directly marked onto objects as 2-dimensional codes. Traceability management of key parts is now possible with direct marking and reading even for small parts.

OMRON pursues direct marking, and now we provide dependable reading of 2-dimensional codes engraved on metal parts.

Dependably Read Dot Peen Markings

- Markings made by dot peen machines can be dependably read, providing the user with a wider range of selection of marking devices.
Stable reading is possible even if the shape of cells changes because of aging in the marking device.
(Reference: Stamping using a Vector Co. dot peen machine)

Dot Codes* Read at Any Angle: 360 Compatibility

- Codes can be read even with rough backgrounds on the casting surface or other locations.
- Dot codes* can be read at any angle through a 360 range.
* Dot codes are 2-dimensional codes in which dots form the cells.

Dependably Read Markings at an Angle

- With dependable reading at an angle, installation is possible even on existing facilities with space limitations.

Easy Setup

Setup is easily achieved with a Memory Card (compact flash memory) slot on the V530-R160E and V530-R160EP. Just insert a card to easily copy settings or save images. Carrying a personal computer and cables is no longer required for process switchovers.

Easy Operation and Maintenance

Trends can be monitored to achieve the following:

- Displaying changes in the status (correlation values) of codes or contrast changes on line graphs on a monitor.
- Setting alarm levels while monitoring graphs.
- Outputting external alarms if a value falls below the set value.

Easy Analysis

Manage Data Histories
Histories of the number of OK and NG reads can be managed.

Check and Analyze Troubles
Up to 35 NG images can be saved in internal memory.

Save Images to Memory Cards
Save approx. 200 images in 64 MB and 400 images in 128 MB .

Reproduce Images

System Configuration

Models

Name	Model No.	Remarks
Controller	V530-R160E, V530-R160EP	
Console	F150-KP-2D	2-m cable
Camera	F150-S1A-2D	
Camera Cable	F150-VS-2D	3-m cable
Monitor Cable	F150-VM-2D	2-m cable
Liquid Crystal Monitor	F150-M05L-2D	
Parallel Cable	F160-VP	Cable with loose wires for Parallel I/O Connector (2-m cable)
Memory Card	QM300-N128S	Card capacity: 64 MB
	XW2Z-200S-V	Ford capacity: 128 MB
	XW2Z-200T	For SYSMAC PLC (2-m cable)

Specifications
V530-R160E, V530-R160EP Controller

F150-S1A-20 Camera

Item	
Picture element	$1 / 3$-inch CCD
Effective pixels	$659(\mathrm{H}) \times 494(\mathrm{~V})$
Shutter function	Electronic frame shutter Shutter speed: $1 / 100,1 / 500,1 / 2000$, or $1 / 10000 \mathrm{~s}$ (menu selectable)
Ambient temperature	Operating: 0 to $50^{\circ} \mathrm{C}$, storage: -25 to $60^{\circ} \mathrm{C}$ (with no icing or condensation)
Ambient humidity	35% to 85% (with no condensation)
Weight	Approx. 80 g

Monitor

Item	Name Model No.
Size	5.7 inches
Type	Liquid Crystal Monitor F150-M05L-2D
Resolution	620×480 dots
Input signal crystal color TFT	
Power supply voltage	NTSC composite video $(1.0 \mathrm{~V} / 75 \Omega)$
Current consumption	20.4 to 26.4 VDC
Ambient temperature	Approx. 700 mA (with no icing or condensation)
Ambient humidity	Operating/Storage: 35\% to 85% (with no condensation)
Weight (Monitor only)	Approx. 1 kg
Accessories	Operation manual, 4 mounting brackets

Dimensions

V530-R160E, V530-R160EP Controller

F150-S1A-2D Camera

F150-M05L-2D Liquid Crystal Monitor

F150-KP-2D Console

CCTV Lenses

Model	3Z4S-LE SV-0614V	3Z4S-LE SV-0813V	3Z4S-LE SV-1214V	3Z4S-LE SV-1614V	3Z4S-LE SV-2514V
Appearance					$29 \text { dia. } 24.5$
Focal length	6 mm	8mm	12 mm	16 mm	25mm
Brightness	F1.4	F1.3	F1.4	F1.4	F1.4
Filter size	M27 P0.5	M25.5 P0.5	M27 P0.5	M27 P0.5	M27 P0.5

Model	3Z4S-LE SV-3518V	3Z4S-LE SV-5018V	3Z4S-LE SV-7527V	3Z4S-LE SV-10035V
Appearance				
Focal length	35 mm	50 mm	75 mm	100 mm
Brightness	F1.8	F1.8	F2.7	F3.5
Filter size	M27 P0.5	M30.5 P0.5	M30.5 P0.5	M30.5 P0.5

Extension Tubes

| Model 3Z4S-LE SV-EXR
 Contents Set of 7 tubes
 $(40 \mathrm{~mm}, 20 \mathrm{~mm}, 10 \mathrm{~mm}, 5 \mathrm{~mm}, 2.0 \mathrm{~mm}, 1.0 \mathrm{~mm}$, and 0.5 mm$)$
 Maximum outer diameter: 30 mm dia.
 Note 1: Do not use the $0.5-\mathrm{mm}, 1.0-\mathrm{mm}$, and $2.0-\mathrm{mm}$ Extension Tubes attached to each other. Since these
 Extension Tubes are placed over the threaded section of the Lens or other Extension Tube, the connection
 may loosen when more than one $0.5-\mathrm{mm}, 1.0-\mathrm{mm}$ or 2.0-mm Extension Tube are used together.
 Note 2: Reinforcement is required to protect against vibration when Extension Tubes exceeding 30 mm are used. |
| :--- | :--- |

Optical Graph

Reading the Optical Graph

The X axis of the optical chart shows the field of vision (mm) (See Note.), and the Y axis of the optical chart shows the camera installation distance (mm).

Note:The lengths of the fields of vision given in the optical charts are the lengths of the Y axis.

Select the appropriate lighting method for the material of the marked object.
Note: Ask your OMRON representative for models, prices, and product information.

Back Lighting

Codes on transparent objects such as glass can be read by detecting the contrast between transmitted and blocked light.
Applications: Transparent objects, such as LCD glass

Reflected Lighting

Ring Lighting

If ring lighting is used to produce consistent lighting for markings printed on paper, rough metal parts or other light-dispersing objects, the difference in the reflection factors of the background and the marking enables stable detection.
Applications: Markings engraved on automotive parts

Oblique Lighting Ring lighting close to the marked object For codes inscribed with a laser marker onto PCBs and other relatively glossy surfaces, oblique lighting provides stable detection by distinguishing between regular and diffuse reflected light.
Applications: Direct marking on PCBs and electronic parts

Coaxial Lighting

For codes marked directly onto wafers and other mirrorlike surfaces, a stable image with few shadows from surface irregularities can be obtained from the marked object by using coaxial lighting, because it detects only regular reflected light, distinguishing it from diffuse reflected light. (The surface of the workpiece must be perpendicular to the optical axis.)
Applications: Reading codes marked on wafers and similar objects

The following descriptions are based on the Data Matrix and QR Code systems, both of which use 2-dimensional codes.

Data Matrix

The Data Matrix system was developed by I.D. Matrix and is used extensively in the semiconductor and electronics industries. A Data Matrix has a relatively large data capacity for its size. There are several different types of Data Matrix, differentiated by their error correction method. The ECC200 is the most commonly used type.

QR Code

The "Quick Response Code" type is a 2-dimensional code that was developed in Japan. Highspeed reading is possible with a QR Code, but the code size is quite large compared to other 2-dimensional codes.

Finder Pattern

These are patterns used to detect the position of 2-dimensional codes. The shape of the finder patterns varies with the type of code.

Margin (Quiet Zone)

This is the empty space around 2-dimensional codes. Usually it is necessary to ensure that there is a margin around 2-dimensional codes. The size of the required margins varies with the type of code.

Margin

Cell

These squares are the units that make up matrix-type 2-dimensional codes. Whether these cells are black or white determines the information carried by the code.

Matrix Size

The matrix size is expressed in the number of cells of which a 2-dimensional code matrix consists. (Examples: 10×10 and 12×12). The matrix size is sometimes called the code size or simply, the number of cells.

Error Correction

This term is used to describe the function which detects and corrects errors using a special mathematical technique (commonly known as the "Reed-Solomon" method). Using this function, reading is possible, to a certain extent, for codes with poor printing quality or that are damaged. There are, however, limits on the extent to which correction is possible, and reading may not be possible for codes if the damage is extensive. There are 2 -dimensional codes for which the error correction level can be selected. For example, the error correction level for Data Matrix ECC200 is approximately 30% (varies with the matrix size). With a QR Code, error correction levels of $7 \%, 15 \%, 25 \%$, and 30% are available.

Left and Right Reversal

This is the term used to describe reading 2-dimensional codes marked on a transparent material from the reverse side or reading 2-dimensional codes reflected in a mirror. For example, when a 2-dimensional code marked on glass is read from the back, left and right reversal appears.

Black and White Reversal

Usually, in images of 2-dimensional codes, the code itself is black and the background is white. Sometimes, however, due to the material of the reading object and the kind of lighting used, the code will appear white in the image obtained. This state is called "black and white reversal."

The relation between matrix size (number of cells) and data capacity is shown in the table at right. In this example, the matrix size is 12×12 cells.

12 cells

The relation between matrix size (number of cells) and data capacity is shown in the table at right. In this example, the matrix size is 21×21 cells.

7 cells 14 cells

Data Matrix ECC200

Matrix size	Maximum data capacity (See note 1.)				
	Numbers	Alphanumeric characters	Symbols	$\begin{gathered} \text { Japanese Kanji } \\ \text { (Shift JIS) } \\ \hline \end{gathered}$	JIS8
10×10	6	3	3	---	1
12×12	10	6	5	1	3
14×14	16	10	9	3	6
16×16	24	16	14	5	10
18×18	36	25	22	8	16
20×20	44	31	28	10	20
22×22	60	43	38	14	28
24×24	72	52	46	17	34
26×26	88	64	57	21	42
32×32	124	91	81	30	60
36×36	172	127	113	42	84
40×40	228	169	150	56	112
44×44	288	214	190	71	142
48×48	348	259	230	86	172
52×52	408	304	270	101	202
64×64	560	418	372	139	278
8×18	10	6	5	1	3
8×32	20	13	12	4	8
12×26	32	22	20	7	14
12×36	44	31	28	10	20
16×36	64	46	41	15	30
16×48	98	72	64	23	47

QR Code Model 2

Matrix size (version) (See note 2.)	Error correction	Maximum data capacity (See note 1.)			
		Numbers	Alphanumeric characters (upper case only)	JIS8	Japanese Kanji (Shift JIS)
21×21 (version 1)	L (7\%)	41	25	17	10
	M (15\%)	34	20	14	8
	Q (25\%)	27	16	11	7
	H (30\%)	17	10	7	4
25×25 (version 2)	L (7\%)	77	47	32	20
	M (15\%)	63	38	26	16
	Q (25\%)	48	29	20	12
	H (30\%)	34	20	14	8
29×29 (version 3)	L (7\%)	127	77	53	32
	M (15\%)	101	61	42	26
	Q (25\%)	77	47	32	20
	H (30\%)	58	35	24	15
33×33 (version 4)	L (7\%)	187	114	78	48
	M (15\%)	149	90	62	38
	Q (25\%)	111	67	46	28
	H (30\%)	82	50	34	21
37×37 (version 5)	L (7\%)	255	154	106	65
	M (15\%)	202	122	84	52
	Q (25\%)	144	87	60	37
	H (30\%)	106	64	44	27
41×41 (version 6)	L (7\%)	322	195	134	82
	M (15\%)	255	154	106	65
	Q (25\%)	178	108	74	45
	H (30\%)	139	84	58	36

Note 1: Maximum Data Capacity
The maximum amount of data that can be stored in a code varies with the code size. In other words, if there is a large amount of data to be stored, then the code size must also be large. The maximum data capacity will also vary with the type of characters used. With a QR Code or Data Matrix, the numeric capacity (numbers only) is larger than the alpha numeric capacity (numbers and letters), which is in turn larger than the Japanese Kanji (Shift JIS) capacity. The order and combinations of different characters also affects the data capacity.
Note 2: The matrix size of a QR Code is indicated by the version. "Version 1" indicates that a QR Code contains (the minimum) 21 cells both horizontally and vertically. The larger the version number, the larger the number of cells per side.

General Precautions

This brochure contains mainly information required to select models. It does not contain application precautions. Always read the application precautions and other information in the operation manual before using the product.

The application examples given in this brochure are for reference only. Confirm the functions, capacities, and safety requirements of all devices and equipment before actual application.

Consult your OMRON representative before using the product under conditions that are not described in this brochure or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems, machines, and equipment that may have a serious influence on lives and property if used improperly.
Make sure that the ratings and performance characteristics of the product are sufficient for the systems, machines, and equipment, and be sure to provide the systems, machines, and equipment with double safety mechanisms.

This document provides information mainly for selecting suitable models.
Please read the Instruction Sheet or Manual for information that the user must
understand and accept before purchase, including information on warranty, limitations of liability, and precautions.

OMRON Corporation Industrial Automation Company Tokyo, JAPAN
 Contact: www.ia.omron.com

Regional Headquarters

OMRON EUROPE B.V.
Sensor Business Unit
Carl-Benz-Str. 4, D-71154 Nufringen, Germany Tel: (49) 7032-811-0/Fax: (49) 7032-811-199

OMRON ASIA PACIFIC PTE. LTD.
No. 438A Alexandra Road \# 05-05/08 (Lobby 2),
Alexandra Technopark
Singapore 119967
Tel: (65) 6835-3011/Fax: (65) 6835-2711

OMRON ELECTRONICS LLC
One Commerce Drive Schaumburg,
IL 60173-5302 U.S.A. Tel: (1) 847-843-7900/Fax: (1) 847-843-7787

Authorized Distributor:

