A Wide Range of Basic Mixed I/O Units for Different Applications and Wiring Methods

- One Mixed I/O Unit has connectors for both inputs and outputs. Use Mixed I/O Units to easily build space-saving systems.

CJ1W-MD231

CJ1W-MD261

CJ1W-MD563

Features

- Select the best interface for each application: Fujitsu connectors and MIL connectors.
- Select sinking outputs or sourcing outputs. The CJ1W-MD232 has load short-circuit protection.
- The ON and OFF response times can be set to between 0 and 32 ms in the Setup in the CPU Unit.
- Mixed I/O Units with 5-V TTL inputs are also available. *
- A wide variety of Connector-Terminal Block Conversion Units are available to allow you to easily wire external I/O devices.
* Applies to the CJ1W-MD563.

Ordering Information

International Standards

- The standards are abbreviated as follows: U: UL, U1: UL (Class I Division 2 Products for Hazardous Locations), C: CSA, UC: cULus, UC1: cULus (Class I Division 2 Products for Hazardous Locations), CU: cUL, N: NK, L: Lloyd, and CE: EC Directives.
- Contact your OMRON representative for further details and applicable conditions for these standards.

Mixed I/O Units

Unit type	Product name	Specifications						Current consumption (A)		Model	Standards
		Output type	I/O points	Input voltage, Input current	Commons	External connection	No. of words allocated	5 V	24 V		
				Maximum switching capacity							
CJ1 Basic I/O Units	DC Input/ Transistor Output Units	Sinking	16 inputs	$24 \mathrm{VDC}$,	16 points, 1 common	Fujitsu connector	2 words	0.13	-	CJ1W-MD231	$\begin{aligned} & \text { UC1, N, } \\ & \text { CE } \end{aligned}$
			16 outputs	$\begin{aligned} & \text { 250 VAC/24 VDC, } \\ & 0.5 \mathrm{~A} \end{aligned}$	16 points, 1 common						
		Sinking	16 inputs	$24 \mathrm{VDC}, 7 \mathrm{~mA}$	16 points, 1 common	MIL connector	2 words	0.13	-	CJ1W-MD233	$\begin{aligned} & \text { UC1, N, } \\ & \text { CF } \end{aligned}$
			16 outputs	12 to $24 \mathrm{VDC}, 0.5 \mathrm{~A}$	16 points, 1 common						
		Sinking	32 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	Fujitsu connector	4 words	0.14	-	CJ1W-MD261	
			32 outputs	12 to $24 \mathrm{VDC}, 0.3 \mathrm{~A}$	16 points, 1 common						
		Sinking	32 inputs	$24 \mathrm{VDC}, 4.1 \mathrm{~mA}$	16 points, 1 common	MIL connector	4 words	0.14	-	CJ1W-MD263	
			32 outputs	12 to $24 \mathrm{VDC}, 0.3 \mathrm{~A}$	16 points, 1 common						
		Sourcing	16 inputs	$24 \mathrm{VDC}$,	16 points, 1 common	MIL connector	2 words	0.13	-	CJ1W-MD232	$\begin{aligned} & \text { UC1, N, L, } \\ & \text { CE } \end{aligned}$
			16 outputs	$24 \mathrm{VDC}, 0.5 \mathrm{~A}$ Short-circuit protection	16 points, 1 common						
	TTL I/O Units	-	32 inputs	$5 \mathrm{VDC}, 35 \mathrm{~mA}$	16 points, 1 common	MIL connector	4 words	0.19	-	CJ1W-MD563	UC1, N, CE
			32 outputs	$5 \mathrm{VDC}, 35 \mathrm{~mA}$	16 points, 1 common						

Accessories

Connectors are not included for models with connectors. Either use one of the applicable connector listed below or use an applicable ConnectorTerminal Block Conversion Unit or I/O Relay Terminal. For details on wiring methods, refer to External Interface.

Applicable Connectors

Fujitsu Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

Name	Connection	Remarks		Applicable Units	Model	Standards
40-pin Connectors	Soldered	$\begin{aligned} & \text { FCN-361J040-AU } \\ & \text { FCN-360C040-J2 } \end{aligned}$	Connector Connector Cover	Fujitsu Connectors: CJ1W-ID231(32 inputs): 1 per Unit CJ1W-ID261 (64 inputs): 2 per Unit CJ1W-OD231 (32 outputs): 1 per Unit CJ1W-OD261 (64 outputs): 2 per Unit CJ1W-MD261 (32 inputs, 32 outputs): 2 per Unit	C500-CE404	-
	Crimped	FCN-363J040 FCN-363J-AU FCN-360C040-J2	Housing Contactor Connector Cover		C500-CE405	
	Pressure welded	FCN-367J040-AU/F			C500-CE403	
24-pin Connectors	Soldered	FCN-361JO24-AU FCN-360C024-J2	Connector Connector Cover	Fujitsu Connectors: CJ1W-MD231 (16 inputs, 16 outputs): 2 per Unit	C500-CE241	
	Crimped	FCN-363J024 FCN-363J-AU FCN-360C024-J2	Housing Contactor Connector Cover		C500-CE242	
	Pressure welded	FCN-367J024-AU/F			C500-CE243	

MIL Connectors for 32-input, 32-output, 64-input, 64-output, 32-input/32-output, and 16-input/16-output Units

| Name | Connection | Remarks | Applicable Units | Model | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Applicable Connector-Terminal Block Conversion Units

Type	Series	1/0	Number of poles	Terminal type	Size			Mounting		Common terminals	Bleeder resistance	Indicators	Model	Standards
					Depth (mm)	Height (mm)	Width (mm)	$\begin{gathered} \text { DIN } \\ \text { Track } \end{gathered}$	Screws					
Slim	XW2D	I/O	20	M3	39	40	79	Yes	Yes	No	No	No	XW2D-20G6	-
			40				149						XW2D-40G6	
													XW2D-40C6	
		Input only									Built-in		XW2D-40G6-RF	
													XW2D-40G6-RM	
Through	XW2B	I/O	20	M3.5	45	45.3	112.5	Yes	Yes	No	No	No	XW2B-20G5	
				M3 (European type)			67.5						XW2B-20G4	
			40	M3.5			202.5						XW2B-40G5	
				M3 (European type)			135						XW2B-40G4	
With common terminals	XW2C	I/O	20	M3	39	40	149	Yes	Yes	Yes	No	No	XW2C-20G6-IO16	
		Input only	20	M3.5	50	38	160					Yes	XW2C-20G5-IN16	
With common terminals, 3-tier	XW2E	Inputs only, 3 tiers	20	M3.5	50	53	149	Yes	Yes	Yes	No	No	XW2E-20G5-IN16	
Screwless clamp terminals	XW2F	Input only	20	Clamp	50	40	95.5	Yes	Yes	Yes	No	No	XW2F-20G7-IN16	
		Outputs only	20	Clamp	50	40	95.5	Yes	Yes	Yes	No	No	XW2F-20G7-OUT16	
e-CON	XW2N	Input only	20	e-CON connector	50	40	95.5	Yes	Yes	Yes	No	No	XW2N-20G8-IN16	

Applicable I/O Relay Terminals

Type	Series		Specifications							Size (horizontal mounting)			Mounting		Model	Standards	
			Classification		Polarity	Number of points	Rated ON current at contacts	Operation indicators	Terminal block for power supply wiring	Horizontal (mm)	Vertical (mm)	Height (mm)	$\begin{gathered} \text { DIN } \\ \text { Track } \end{gathered}$	Screws			
Spacesaving	G70D	Vertical type G70D-V	Outputs	Relay outputs	NPN	16 (SPSTNO $\times 16$)	5A or 3A	Yes	Expandable	135	46	81	Yes	Yes	G70D-VSOC16	$\begin{aligned} & \text { U, C, } \\ & \text { CE } \end{aligned}$	
				$\begin{array}{\|l} \hline \text { MOSFET } \\ \text { relay } \\ \text { outputs } \end{array}$			0.3A								G70D-VFOM16		
		Flat type G70D		Relay outputs	NPN	$\begin{aligned} & 8 \text { (SPST- } \\ & \text { NO } \times 8 \text {) } \end{aligned}$	5A	Yes	-	68	93	44	Yes	Yes	G70D-SOC08	-	
						16 (SPSTNO $\times 16$)	3A			156	51	39			G70D-SOC16	-	
					PNP	$\begin{aligned} & 16 \\ & (\text { SPST- } \\ & \text { NO } \times 16 \text {) } \\ & \hline \end{aligned}$	3A								G70D-SOC16-1		
				$\begin{array}{\|l} \text { MOSFET } \\ \text { relay } \\ \text { outputs } \end{array}$	NPN	$\begin{aligned} & 16 \\ & (\text { SPST- } \\ & \text { NO } \times 16) \end{aligned}$	0.3A								G70D-FOM16	-	
					PNP										G70D-FOM16-1		
Highcapacity, spacesaving	G70R		Outputs	Relay outputs	NPN	$\begin{aligned} & 8 \text { (SPST- } \\ & \text { NO } \times 8 \text {) } \end{aligned}$	10A	Yes	-	136	93	55	Yes	Yes	G70R-SOC08	-	
Standard	G7TC		Inputs	$\begin{aligned} & \text { AC } \\ & \text { inputs } \end{aligned}$	NPN	16 (SPSTNO $\times 16$)	1A	Yes	-	182	85	68	Yes	-	G7TC-IA16	U, C	
			$\begin{aligned} & \text { DC } \\ & \text { inputs } \end{aligned}$	G7TC-ID16													
			Outputs	Relay outputs	NPN	$\begin{aligned} & 8 \text { (SPST- } \\ & \text { NO } \times 8 \text {) } \end{aligned}$	5A			102					G7TC-0C08		
			16 (SPSTNO $\times 16$)			182				G7TC-OC16							
			PNP		$\begin{aligned} & 16 \\ & (\text { SPST- } \\ & \text { NO } \times 16 \text {) } \end{aligned}$					G7TC-0C16-1					-		
Highcapacity socket	G70A (Socket only)			Outputs	Relay outputs	NPN	16 (SPDT \times 16 possible with G2R Relays)	10 A (Terminal block allowable current)	No	-	234	75	64	Yes	-	G70A-ZOC16-3 (Socket only) + Relay/SSR/ MOSFET Relay/ Timer	$\begin{aligned} & \mathrm{U}, \mathrm{C}, \\ & \mathrm{CE} \end{aligned}$
			PNP			G70A-ZOC16-4 (Socket only) + Relay/SSR/ MOSFET Relay/ Timer											

Mountable Racks

Model	NJ system		CJ system (CJ1, CJ2)		CP1H system CP1H PLC	NSJ system	
	CPU Rack	Expansion Rack	CPU Rack	Expansion Backplane		NSJ Controller	Expansion Backplane
CJ1W-MD231	10 Units	10 Units (Per Expansion Rack)	10 Units	10 Units (Per Expansion Backplane)	Not supported	Not supported	10 Units (Per Expansion Backplane)
CJ1W-MD232							
CJ1W-MD233							
CJ1W-MD261							
CJ1W-MD263							
CJ1W-MD563							

Specifications

CJ1W-MD231 DC Input/Transistor Output Unit (24 VDC, 16 Inputs/16 Outputs)

Name	16-point DC Input/16-point Transistor Output Unit with Fujitsu Connectors (Sinking Outputs)		
Model	CJ1W-MD231		
Output section (CN1)		Input section (CN2)	
Rated Voltage	12 to 24 VDC	Rated Input Voltage	24 VDC
Operating Load Voltage Range	10.2 to 26.4 VDC	Operating Input Voltage	20.4 to 26.4 VDC
Maximum Load Current	0.5 A/point, 2.0 A/Unit	Input Impedance	$3.3 \mathrm{k} \Omega$
Maximum Inrush Current	4.0 A/point, 10 ms max .	Input Current	7 mA typical (at 24 VDC)
Leakage Current	0.1 mA max.	ON Voltage/ON Current	14.4 VDC min./3 mA min.
Residual Voltage	1.5 V max.	OFF Voltage/OFF Current	5 VDC max./1 mA max.
ON Response Time	0.1 ms max.	ON Response Time	8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *
OFF Response Time	0.8 ms max.		
No. of Circuits	16 (16 points/common, 1 circuit)	OFF Response Time	8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *
Fuse	None		
External Power Supply	12 to $24 \mathrm{VDC}, 20 \mathrm{~mA} \mathrm{~min}$.	No. of Circuits	16 (16 points/common, 1 circuit)
		Number of Simultaneously ON Points	75\% (at 24 VDC)
Insulation Resistance	$20 \mathrm{M} \Omega$ between the external terminals and the GR terminal (at 100 VDC)		
Dielectric Strength	1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max .		
Internal Current Consumption	5 VDC 130 mA max.		
Weight	90 g max.		
Accessories	None		
Circuit Configuration	CN1 (OUT)	CN2 (IN)	
	- The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.	 - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.	

* The ON response time will be 20μ s maximum and OFF response time will be 400μ s maximum even if the response times are set to 0 ms due to internal element delays.

CJ1W-MD233 DC Input/Transistor Output Unit (24 VDC, 16 Inputs/16 Outputs)

- The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.
- The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

	CN1 (OUT)	CN2 (IN)
External connection and terminal-device variable diagram	- When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if polarity is reversed. - Be sure to wire both terminals 3 and 4 (COM0 (0 V)) of CN1. - Be sure to wire both terminals 1 and $2(+\mathrm{V})$ of CN1. - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.	- When wiring, pay careful attention to the polarity of the external power supply. The load may operate incorrectly if polarity is reversed. - Be sure to wire both pins 3 and 4 (COM1) of CN2, and set the same polarity for both pins. - The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.

* The ON response time will be 20μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.

CJ1W-MD261 DC Input/Transistor Output Unit (24 VDC 32 Inputs/32 Outputs)

Name	32-point DC Input/32-point Transistor Output Unit with Fujitsu Connectors (Sinking Outputs)			
Model	CJ1W-MD261			
Output section (CN1)			Input section (CN2)	
Rated Voltage	12 to 24 VDC		Rated Input Voltage	24 VDC
Operating Load Voltage Range	10.2 to 26.4 VDC		Operating Input Voltage	20.4 to 26.4 VDC
Maximum Load Current	0.3 A/point, 1.6 A/common, 3.2 A/Unit		Input Impedance	$5.6 \mathrm{k} \Omega$
Maximum Inrush Current	3.0 A/point, 10 ms max .		Input Current	4.1 mA typical (at 24 VDC)
Leakage Current	0.1 mA max.		ON Voltage/ON Current	19.0 VDC min./3 mA min. *2
Residual Voltage	1.5 V max.		OFF Voltage/OFF Current	5 VDC max./1 mA max.
ON Response Time	0.5 ms max .		ON Response Time	8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *1
OFF Response Time	1.0 ms max .			
No. of Circuits	32 (16 points/common, 2 circuits)		OFF Response Time	8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *1
Fuse	None			
External Power Supply	12 to $24 \mathrm{VDC}, 30 \mathrm{~mA}$ min.		No. of Circuits	32 (16 points/common, 2 circuits)
			Number of Simultaneously ON Points	75\% (24 points) (at 24 VDC)
Insulation Resistance	$20 \mathrm{M} \Omega$ between the external terminals and the GR terminal (at 100 VDC)			
Dielectric Strength	1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max.			
Internal Current Consumption	5 VDC 140 mA max.			
Weight	110 g max.			
Accessories	None			
Circuit Configuration	CN1 (OUT)		CN2 (IN)	
	- The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.		 - The signal names of The device variable name.	f the terminals are the device variable names. names are the names that use "Jxx" as the device

*1. The ON response time will be 120μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.
*2. Observe the following restrictions when connecting to a 2 -wire sensor.

- Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V).
- Use a sensor with a minimum load current of 3 mA min.
- Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

CJ1W-MD263 DC Input/Transistor Output Unit (24 VDC 32 Inputs/32 Outputs)

*1. The ON response time will be 120μ s maximum and OFF response time will be 400μ s maximum even if the response times are set to 0 ms due to internal element delays.
*2. Observe the following restrictions when connecting to a 2 -wire sensor.

- Make sure the input power supply voltage is larger than the ON voltage (19 V) plus the residual voltage of the sensor (approx. 3 V).
- Use a sensor with a minimum load current of 3 mA min.
- Connect bleeder resistance if you connect a sensor with a minimum load current of 5 mA or higher.

CJ1W－MD232 DC Input／Transistor Output Unit（24 VDC， 16 inputs／16 Outputs）

Name	16－point DC Input／16－point Transistor Output Unit with MIL Connectors（Sourcing Outputs）				
Model	CJ1W－MD232				
Output section（CN1）		Input section（CN2）			
Rated Voltage	24 VDC	Rated Input Voltage	24 VDC		
Operating Load Voltage Range	20.4 to 26．4 VDC	Operating Input Voltage	20.4 to 26．4 VDC		
Maximum Load Current	0．5 A／point，2．0 A／Unit	Input Impedance	$3.3 \mathrm{k} \Omega$		
Leakage Current	0.1 mA max．	Input Current	7 mA typical（at 24 VDC ）		
Residual Voltage	1.5 V max．	ON Voltage／ON Current	14．4 VDC min．／3 mA min．		
ON Response Time	0.5 ms max ．	OFF Voltage／OFF Current	5 VDC max．／1 mA max．		
OFF Response Time	1.0 ms max．	ON Response Time	8.0 ms max．（Can be set to between 0 and 32 in the Setup．）＊		
Load Short－ circuit Protection	Detection current： 0.7 to 2.5 A min． Automatic restart after error clearance．	OFF Response Time	8.0 ms max．（Can be set to between 0 and 32 in the Setup．）＊		
No．of Circuits	16 （16 points／common， 1 circuit）	No．of Circuits	16 （16 points／common， 1 circuit）		
External Power Supply	20.4 to 26．4 VDC， 40 mA min．	Number of Simultaneously ON Points	75\％（at 24 VDC ）		
Insulation Resistance	$20 \mathrm{M} \Omega$ between the external terminals and the GR terminal（at 100 VDC ）				
Dielectric Strength	1,000 VAC between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max ．				
Internal Current Consumption	5 VDC 130 mA max				
Weight	100 g max ．				
Accessories	None				
Circuit Configuration	CN1（OUT）	CN2（IN）			
	－The signal names of the terminals are the device variable names． The device variable names are the names that use＂Jxx＂as the device name．	Allocated CIO word －The signal names of The device variable name．	nal me 00 7 。 M10－ 80 5。 M1。 f the name	Input are th names	device variable names． that use＂Jxx＂as the device

* The ON response time will be 20μ s maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.

CJ1W-MD563 TTL I/O Unit (32 Inputs/32 Outputs)

Name	32-point Input/32-point Output TTL I/O Unit with MIL Connectors		
Model	CJ1W-MD563		
Output section (CN1)		Input section (CN2)	
Rated Voltage	$5 \mathrm{VDC} \pm 10 \%$	Rated Input Voltage	$5 \mathrm{VDC} \pm 10 \%$
Operating Load Voltage Range	4.5 to 5.5 VDC	Input Impedance	$1.1 \mathrm{k} \Omega$
Maximum Load Current	$35 \mathrm{~mA} /$ point, $560 \mathrm{~mA} /$ common, $1.12 \mathrm{~A} /$ Unit	Input Current	Approx. 3.5 mA (at 5 VDC)
Leakage Current	0.1 mA max.	ON Voltage	3.0 VDC min.
Residual Voltage	0.4 V max.	OFF Voltage	1.0 VDC max.
ON Response Time	0.2 ms max.	ON Response Time	8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *
OFF Response Time	0.3 ms max.	OFF Response Time	8.0 ms max. (Can be set to between 0 and 32 in the Setup.) *
No. of Circuits	32 points (16 points/common, 2 circuits)		
Fuse	None	No. of Circuits	32 points (16 points/common, 2 circuits)
External Power Supply	$5 \mathrm{VDC} \pm 10 \%, 40 \mathrm{~mA} \mathrm{~min}$. (1.2 mA \times No. of ON points)	Number of Simultaneously ON Points	100\% (16 points/common)
Insulation Resistance	$20 \mathrm{M} \Omega$ between the external terminals and the GR terminal (at 100 VDC)		
Dielectric Strength	$1,000 \mathrm{VAC}$ between the external terminals and the GR terminal for 1 minute at a leakage current of 10 mA max .		
Internal Current Consumption	5 VDC 190 mA max.		
Weight	110 g max .		
Accessories	None		
Circuit Configuration	CN1 (OUT)	CN2 (IN)	
	- The signal names of the terminals are the device variable names. The device variable names are the names that use "Jxx" as the device name.	Allocated CIO word $W d m+2\left\{\begin{array}{l} \mathrm{Jxx} \\ \mathrm{Jxx} \end{array}\right.$ $W d m+3\left\{\begin{array}{l} J x x \\ J x x \end{array}\right.$ - The signal names of The device variable name.	f the terminals are the device variable names. names are the names that use "Jxx" as the device

[^0]Bit Allocations for Mixed I/O Unit

32-point Mixed I/O Unit

Allocated CIO word		Signal name (CJ/NJ)
WIO (Output)	Bit	
	00	OUT0/Jxx_Ch1_Out00
	01	OUT1/Jxx_Ch1_Out01
	$:$	$:$
	14	OUT14/Jxx_Ch1_Out14
Wd m+1 (Input)	15	OUT15/Jxx_Ch1_Out15
	00	IN0/Jxx_Ch1_In00
	01	IN1/Jxx_Ch1_In01
	$:$	$:$
	14	IN14/Jxx_Ch1_In14
		15

64-point Mixed I/O Unit

Allocated CIO word		Signal name (CJ/NJ)
CIO	Bit	
Wd m (Output)	00	OUT0/Jxx_Ch1_Out00
	01	OUT1/Jxx_Ch1_Out01
	:	:
	14	OUT14/Jxx_Ch1_Out14
	15	OUT15/Jxx_Ch1_Out15
Wd m+1 (Output)	00	OUT0/Jxx_Ch2_Out00
	01	OUT1/Jxx_Ch2_Out01
	:	:
	14	OUT14/Jxx_Ch2_Out14
	15	OUT15/Jxx_Ch2_Out15
Wd m+2 (Input)	00	INO/Jxx_Ch1_In00
	01	IN1/Jxx_Ch1_In01
	:	:
	14	IN14/Jxx_Ch1_In14
	15	IN15/Jxx_Ch1_In15
Wd m+3 (Input)	00	INO/Jxx_Ch2_In00
	01	IN1/Jxx_Ch2_In01
	:	:
	14	IN14/Jxx_Ch2_In14
	15	IN15/Jxx_Ch2_In15

External Interface

32-point Units (Model with 24-pin $\times 2$ Fujitsu Connectors or with 20-pin $\times 2$ MIL Connectors)

64-point Units (Models with Two 40-point Fujitsu Connectors or MIL Connector)

I/O Unit Wiring Methods

An I/O Unit can be connected to an external device by any of the following three methods.

1. User-provided Cable

An I/O Unit can be directly connected to an external device by using a connector.

A	User-provided cable
B	External device
C	Connector

2. Connector-Terminal Block Conversion Unit

Use a Connecting Cable to connect to a Connector-Terminal Block Conversion Unit.
Converting the I/O Unit connector to a screw terminal block makes it easy to connect external devices.

A	Connecting Cable for Connector-Terminal Block Conversion Unit XW2Z
B	Connector-Terminal Block Conversion Unit XW2 \square
C	Conversion to a screw terminal block

3. I/O Relay Terminal

Use a Connecting Cable to connect to an I/O Relay Terminal.
The I/O specifications can be converted to relay outputs and AC inputs by connecting the I/O Relay Terminal to an I/O Unit.

A	G79 I/O Relay Terminal Connecting Cable
B	G7 $\square \square$ I/O Relay Terminals Or, conversion to relay outputs and AC inputs.

1. Using User-made Cables with Connector

Available Connectors

Use the following connectors when assembling a connector and cable.
32- and 64-point Basic I/O Units with Fujitsu-compatible Connectors
Applicable Units

Model	Specifications	Pins
CJ1W-MD261	24-VDC Input/Transistor Output Units, 32 Inputs, 32 Outputs	40
CJ1W-MD231	24-VDC Input/Transistor Output Units, 16 Inputs, 16 Outputs	24

Applicable Cable-side Connectors

Connection	Pins	OMRON set	Fujitsu parts
Solder-type	40	C500-CE404	Socket: FCN-361JO40-AU Connector cover: FCN-360C040-J2
	24	C500-CE241	Socket: FCN-361JO24-AU Connector cover: FCN-360C024-J2
	40	C500-CE405	Socket: FCN-363J040 Connector cover: FCN-360C040-J2 Contacts: FCN-363J-AU
Pressure-welded 24	Socket: FCN-363J024 Connector cover: FCN-360C024-J2 Contacts: FCN-363J-AU		
	C500-CE242	C500-CE403	FCN-367JO40-AU/F

32- and 64-point Basic I/O Units with MIL Connectors

Applicable Units

Model	Specifications	Pins
CJ1W-MD263	24-VDC Input/Transistor Output Units, 32 inputs, 32 outputs	40
CJ1W-MD563	TTL Input/TTL Output Units, 32 inputs, 32 outputs	40
CJ1W-MD232	24 -VDC Input/Transistor Output Units, 16 inputs, 16 outputs	20
CJ1W-MD233	24 -VDC Input/Transistor Output Units, 16 inputs, 16 outputs	2

Applicable Cable-side Connectors

Connection	Pins	OMRON set	DDK parts
Pressure-welded	40	XG4M-4030-T	FRC5-A040-3T0S
	20	XG4M-2030-T	FRC5-A020-3T0S

Wire Size

We recommend using cable with wire gauges of AWG 24 or AWG 28 ($0.2 \mathrm{~mm}^{2}$ to $0.08 \mathrm{~mm}^{2}$). Use cable with external wire diameters of 1.61 mm max.

Crimping Tools

The following models are recommended for crimping tools and pressure-welding tools for Fujitsu connectors.
Tools for Crimped Connectors (Fujitsu Component)

Product Name	Model
Hand Crimping Tool	FCN-363T-T005/H
Contact Withdrawal Tool	FCN-360T-T001/H

Tools for Pressure-welded Connectors (Fujitsu Component)

Product Name	Model
Hand Press	FCN-707T-T101/H
Cable Cutter	FCN-707T-T001/H
Locator Plate	FCN-367T-T012/H

The following models are recommended for crimping tools for MIL connectors.
Tools for Crimped Connectors (OMRON)

Product Name	Model	
Crimping Tool	XY2B-0002	
Attachment	XY2B-1007	

2．Connecting Connector－Terminal Block Conversion Units

Connection Patterns for Connector－Terminal Block Conversion Units

Pattern	Configuration	Number of connectors	Branching
C		2	None
D			
F			2 branches

Combination of I／O Units with Connector－Terminal Block Conversion Units

Unit	I／O capacity	Number of connectors	Polarity	Connection pattern＊1	Number of branches	Connecting Cable	Connector－Terminal Block Conversion Unit	Common terminal
CJ1W－MD231	16 inputs	1 Fujitsu connector	NPN／PNP	C	None	XW2Z－$\square \square \square \mathrm{A}$	XW2D－20G6	None
				C	None	XW2Z－■ดロA	XW2B－20G5	None
				C	None	XW2Z－$\square \square \square$ A	XW2B－20G4	None
				C	None	XW2Z－$\square \square \square$ A	XW2C－20G6－IO16	Yes
				C	None	XW2Z－$\square \square \square$ A	XW2C－20G5－IN16＊2	Yes
				C	None	XW2Z－■ด \square A	XW2E－20G5－IN16＊2	Yes
				C	None	XW2Z－■ด \square A	XW2F－20G7－IN16＊2	Yes
				C	None	XW2Z－■पロA	XW2N－20G8－IN16＊2	Yes
	16 outputs	1 Fujitsu connector	NPN	C	None	XW2Z－■ด \square A	XW2D－20G6	None
				C	None	XW2Z－■ด口A	XW2B－20G5	None
				C	None	XW2Z－■ด口A	XW2B－20G4	None
				C	None	XW2Z－■ด口A	XW2C－20G6－IO16	Yes
				C	None	XW2Z－■ด ${ }^{\text {a }}$	XW2F－20G7－OUT16	Yes
CJ1W－MD232	16 inputs	1 MIL connector	NPN／PNP	C	None		XW2D－20G6	None
				C	None	XW2Z－$\square \square \square \mathrm{X}$	XW2B－20G5	None
				C	None	XW2Z－$\square \square \square$	XW2B－20G4	None
	16 outputs	1 MIL connector	PNP	C	None	XW2Z－$\square \square \square \mathrm{X}$	XW2D－20G6	None
				C	None	XW2Z－$\square \square \square \mathrm{X}$	XW2B－20G5	None
				C	None	XW2Z－■ดロX	XW2B－20G4	None
CJ1W－MD233	16 inputs	1 MIL connector	NPN／PNP	C	None	XW2Z－$\square \square \square$	XW2D－20G6	None
				C	None		XW2B－20G5	None
				C	None	XW2Z－$\square \square \square$	XW2B－20G4	None
	16 outputs	1 MIL connector	NPN	C	None	XW2Z－$\square \square \square$	XW2D－20G6	None
				C	None	XW2Z－■ดロ ${ }^{\text {a }}$	XW2B－20G5	None
				C	None	XW2Z－$\square \square \square \mathrm{X}$	XW2B－20G4	None

Unit	I／O capacity	Number of connectors	Polarity	Connection pattern＊1	Number of branches	Connecting Cable	Connector－Terminal Block Conversion Unit	Common terminal
CJ1W－MD261	32 inputs	1 Fujitsu connector	NPN／PNP	D	None	XW2Z－$\square \square \square$	XW2D－40G6	None
				D	None	XW2Z－$\square \square \square \mathrm{B}$	XW2D－40G6－RF＊3	None
				D	None	XW2Z－$\square \square \square \mathrm{B}$	XW2B－40G5	None
				D	None	XW2Z－$\square \square \square \mathrm{B}$	XW2B－40G4	None
				D	None	XW2Z－■ด口BU	XW2D－40C6	None
				F	2	XW2Z－■ด口D	XW2D－20G6（2 Units）	None
				F	2	XW2Z－■ด口D	XW2B－20G5（2 Units）	None
				F	2	XW2Z－■ด口D	XW2B－20G4（2 Units）	None
				F	2	XW2Z－■ด口D	XW2C－20G6－IO16（2 Units）	Yes
				F	2	XW2Z－■ด口D	XW2C－20G5－IN16（2 Units）＊2	Yes
				F	2	XW2Z－Пด口D	XW2E－20G5－IN16（2 Units）＊2	Yes
				F	2	XW2Z－Пด口D	XW2F－20G7－IN16（2 Units）＊2	Yes
				F	2	XW2Z－■ดDD	XW2N－20G8－IN16（2 Units）＊2	Yes
	32 outputs	1 Fujitsu connector	NPN	D	None	XW2Z－Пด口B	XW2D－40G6	None
				D	None	XW2Z－$\square \square \square \mathrm{B}$	XW2B－40G5	None
				D	None	XW2Z－$\square \square \square \mathrm{B}$	XW2B－40G4	None
				D	None	XW2Z－■ดBU	XW2D－40C6	None
				F	2		XW2D－20G6（2 Units）	None
				F	2	XW2Z－■ด口L	XW2B－20G5（2 Units）	None
				F	2	XW2Z－■ด口L	XW2B－20G4（2 Units）	None
				F	2	XW2Z－■ด口L	XW2C－20G6－IO16（2 Units）	Yes
				F	2	XW2Z－■ด口L	XW2F－20G7－OUT16（2 Units）	Yes
CJ1W－MD263	32 inputs	1 MIL connector	NPN／PNP	D	None	XW2Z－■ด口K	XW2D－40G6	None
				D	None	XW2Z－■ดロK	XW2D－40G6－RM＊3	None
				D	None	XW2Z－■ดロK	XW2B－40G5	None
				D	None	XW2Z－■ดロK	XW2B－40G4	None
				F	2	XW2Z－$\square \square \mathrm{C}$	XW2D－20G6（2 Units）	None
				F	2	XW2Z－■ดロN	XW2B－20G5（2 Units）	None
				F	2	XW2Z－■ดロN	XW2B－20G4（2 Units）	None
				F	2	XW2Z－■ด \square N	XW2C－20G6－IO16（2 Units）	Yes
				F	2	XW2Z－ดด口N	XW2C－20G5－IN16（2 Units）＊2	Yes
				F	2	XW2Z－ดप \square N	XW2E－20G5－IN16（2 Units）＊2	Yes
				F	2	XW2Z－ดप \square N	XW2F－20G7－IN16（2 Units）＊2	Yes
				F	2	XW2Z－■ด \square	XW2N－20G8－IN16（2 Units）＊2	Yes
	32 outputs	1 MIL connector	NPN	D	None	XW2Z－■ดロK	XW2D－40G6	None
				D	None	XW2Z－■ดロK	XW2B－40G5	None
				D	None	XW2Z－■ดロK	XW2B－40G4	None
				F	2	XW2Z－■ด口N	XW2D－20G6（2 Units）	None
				F	2	XW2Z－■ด口N	XW2B－20G5（2 Units）	None
				F	2	XW2Z－■ด \square N	XW2B－20G4（2 Units）	None
				F	2	XW2Z－■ด \square N	XW2C－20G6－IO16（2 Units）	Yes
				F	2	XW2Z－■ด口N	XW2F－20G7－OUT16（2 Units）	Yes
CJ1W－MD563	32 inputs	1 MIL connector	NPN／PNP	D	None	XW2Z－■ดロK	XW2D－40G6	None
				D	None	XW2Z－■ดロK	XW2D－40G6－RM＊3	None
				D	None	XW2Z－■ดロK	XW2B－40G5	None
				D	None	XW2Z－■ดロK	XW2B－40G4	None
				F	2	XW2Z－■ดロN	XW2D－20G6（2 Units）	None
				F	2	XW2Z－■ดロN	XW2B－20G5（2 Units）	None
				F	2	XW2Z－पด口N	XW2B－20G4（2 Units）	None
	32 outputs	1 MIL connector	NPN	D	None	XW2Z－■ดロK	XW2D－40G6	None
				D	None	XW2Z－■ดロK	XW2B－40G5	None
				D	None	XW2Z－■ดロK	XW2B－40G4	None
				F	2	XW2Z－■ดロN	XW2D－20G6（2 Units）	None
				F	2	XW2Z－■ด \square N	XW2B－20G5（2 Units）	None
				F	2	XW2Z－■ด \square N	XW2B－20G4（2 Units）	None

[^1]＊3．Bleeder resistance（ $5.6 \mathrm{k} \Omega$ ）is built in．

Types of connecting cables

Cable length	XW2Z-■	XW2Z-7]B	XW2Z-■पBU	XW2Z-■]D	XW2Z-प]L	XW2Z-■ロX
0.25 m	-	-	-	-	-	-
0.5 m	XW2Z-050A	XW2Z-050B	XW2Z-050BU	-	-	XW2Z-C50X
1.0 m	XW2Z-100A	XW2Z-100B	XW2Z-100BU	XW2Z-100D	XW2Z-100L	XW2Z-100X
1.5 m	XW2Z-150A	XW2Z-150B	XW2Z-150BU	XW2Z-150D	XW2Z-150L	-
2.0 m	XW2Z-200A	XW2Z-200B	XW2Z-200BU	XW2Z-200D	XW2Z-200L	XW2Z-200X
3.0 m	XW2Z-300A	XW2Z-300B	XW2Z-300BU	XW2Z-300D	XW2Z-300L	XW2Z-300X
5.0 m	XW2Z-500A	XW2Z-500B	XW2Z-500BU	XW2Z-500D	XW2Z-500L	XW2Z-500X
10.0 m	XW2Z-010A	XW2Z-010B	-	XW2Z-010D	XW2Z-010L	XW2Z-010X
15.0 m	XW2Z-15MA	XW2Z-15MB	-	XW2Z-15MD	XW2Z-15ML	-
20.0 m	XW2Z-20MA	XW2Z-20MB	-	XW2Z-20MD	XW2Z-20ML	-

3. Connecting I/O Relay Terminals

Connection Patterns for I/O Relay Terminals
Pattern

Combination of I/O Units with I/O Relay Terminals

Unit	I/O capacity	Number of connectors	Polarity	Connection pattern *	Number of branches	Connecting Cable	I/O Relay Terminal
CJ1W-MD231	16 inputs	1 Fujitsu connector	NPN	F	None	G79-■C	G7TC-ID16
				F	None	G79-■C	G7TC-IA16
	16 outputs	1 Fujitsu connector	NPN	F	None	G79-■C	G7TC-OC16
				F	None	G79-■C	G7TC-OC08
				F	None	G79-■C	G70D-SOC16
				F	None	G79-■C	G70D-FOM16
				F	None	G79-■C	G70D-VSOC16
				F	None	G79-■C	G70D-VFOM16
				F	None	G79-■C	G70A-ZOC16-3 and Relay
				F	None	G79-■C	G70R-SOC08
				F	None	G79-■C	G70D-SOC08
CJ1W-MD232	16 outputs	1 MIL connector	PNP	F	None	G79-OपC	G7TC-OC16-1
				F	None	G79-I $\square \mathrm{C}$	G70D-SOC16-1
				F	None	G79-I口C	G70D-FOM16-1
				F	None	G79-I口C	G70A-ZOC16-4 and Relay
CJ1W-MD233	16 inputs	1 MIL connector	NPN	E	None	G79-OपC	G7TC-ID16
				E	None	G79-O \square C	G7TC-IA16
	16 outputs	1 MIL connector	NPN	E	None	G79-OपC	G7TC-OC16
				E	None	G79-O $\square \mathrm{C}$	G7TC-OC08
				E	None	G79-OपC	G70D-SOC16
				E	None	G79-O $\square \mathrm{C}$	G70D-FOM16
				E	None	G79-O $\square \mathrm{C}$	G70D-VSOC16
				E	None	G79-OпC	G70D-VFOM16
				E	None	G79-O■C	G70A-ZOC16-3 and Relay
				E	None	G79-O $\square \mathrm{C}$	G70R-SOC08
				E	None	G79-O■C	G70D-SOC08

CJ1W-MD

Unit	I/O capacity	Number of connectors	Polarity	Connection pattern	Number of branches	Connecting Cable	I/O Relay Terminal
CJ1W-MD261	32 inputs	1 Fujitsu connector	NPN	B	2	G79-IDC- \square	G7TC-ID16
				B	2	G79-IDC- \square	G7TC-IA16
	32 outputs	1 Fujitsu connector	NPN	B	2	G79-O $\square \mathrm{C}-\square$	G7TC-OC16
				B	2	G790 $\square \mathrm{C}-\square$	G7TC-OC08
				B	2	G79-O■C-■	G70D-SOC16
				B	2	G79-O■C- \square	G70D-FOM16
				B	2	G79-O $\square \mathrm{C}-\square$	G70D-VSOC16
				B	2	G79-O $\square \mathrm{C}-\square$	G70D-VFOM16
				B	2	G790 $\square \mathrm{C}-\square$	G70A-ZOC16-3 and Relay
				B	2	G79-O $\square \mathrm{C}-\square$	G70R-SOC08
				B	2	G79-O■C- \square	G70D-SOC08
CJ1W-MD263	32 inputs	1 MIL connector	NPN	B	2	G79-OD-■-D1	G7TC-ID16
				B	2	G79-OD-■-D1	G7TC-IA16
	32 outputs	1 MIL connector	NPN	B	2	G79-OD-口-D1	G7TC-OC16
				B	2	G79-OD-■-D1	G7TC-OC08
				B	2	G79-OD-■-D1	G70D-SOC16
				B	2	G79-OD-■-D1	G70D-FOM16
				B	2	G79-OD-■-D1	G70D-VSOC16
				B	2	G79-OD-■-D1	G70D-VFOM16
				B	2	G79-OD-口-D1	G70A-ZOC16-3 and Relay
				B	2	G79-OD-■-D1	G70R-SOC08
				B	2	G79-OD-■-D1	G70D-SOC08

* For Units with both inputs and outputs, refer to the connection patterns for both input and output connections.

Types of connecting cables

Cable length	G79- $\square \mathbf{C}$	G79-I $\square \mathbf{C}$	G79-I $\square \mathbf{C}-\square$	G79-O $\square \mathbf{C}$	G79-O $\square \mathbf{C}-\square$	G79-O $\square-\square-D 1$
0.25 m	-	G79-I25C	-	G79-O25C	-	-
0.5 m	-	G79-150C	-	G79-O50C	-	G79-O50-25-D1
1.0 m	G79-100C	-	G79-1100C-75	-	G79-O100C-75	G79-O75-50-D1
1.5 m	G79-150C	-	G79-I150C-125	-	G79-O150C-125	-
2.0 m	G79-200C	-	G79-I200C-175	-	G79-O200C-175	-
3.0 m	G79-300C	-	G79-1300C-275	-	G79-O300C-275	
5.0 m	G79-500C	-	G79-1500C-475	-	G79-O500C-475	-

Dimensions

32-point Units (Mixed I/O Units)

With Fujitsu-compatible connector (24-pin $\times 2$)
CJ1W-MD231

With MIL connector (20-pin $\times 2$) CJ1W-MD232 CJ1W-MD233

64-point Units (Mixed I/O Units)

With Fujitsu-compatible connector (40-pin $\times 2$)
CJ1W-MD261

With MIL connector (40-pin $\times 2$)
CJ1W-MD263
CJ1W-MD563

Related Manuals

Name	Cat. No.	Contents
NJ -series CPU Unit Hardware User's Manual NJ501-	W500	An introduction to the entire NJ -series system is provided along with the following information on a Controller built with an NJ501 CPU Unit. - Features and system configuration - Introduction - Part names and functions - General specifications - Installation and wiring - Maintenance and inspection Use this manual together with the NJ-series CPU Unit Software User's Manual (Cat. No. W501).
CJ Series CJ1H-CPU $\square \square \mathrm{H}-\mathrm{R}, \mathrm{CJ} 1 \mathrm{G} / \mathrm{H}-\mathrm{CP} \cup \square \square \mathrm{H}, \mathrm{CJ} 1 \mathrm{G}-\mathrm{CPU} \square \square \mathrm{P}$, CJ1G-CPU $\square \square$, CJ1M-CPU Programmable Controllers Operation Manual	W393	Provides an outlines of and describes the design, installation, maintenance, and other basic operations for the CJ-series PLCs.
CJ-series CJ2H-CPU6 \square-EIP, CJ2H-CPU6 \square, CJ2M-CPU \square CJ2 CPU Unit Hardware User's Manual	W472	Describes the following for CJ2 CPU Units: - Overview and features - Basic system configuration - Part nomenclature and functions - Mounting and setting procedure - Remedies for errors - Also refer to the Software User's Manual (W473).

Read and Understand This Catalog

Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which liability is asserted.
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use that apply to the products. This information by itself is not sufficient for a complete determination of the suitability of the products in combination with the end product, machine, system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses listed may be suitable for the products:

- Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this catalog.
- Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations.
- Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS
OMRON shall not be responsible for the user's programming of a programmable product, or any consequence thereof.

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other reasons.
It is our practice to change model numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the products may be changed without any notice. When in doubt, special model numbers may be assigned to fix or establish key specifications for your application on your request. Please consult with your OMRON representative at any time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when tolerances are shown.

PERFORMANCE DATA

Performance data given in this catalog is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and Limitations of Liability.

ERRORS AND OMISSIONS

The information in this document has been carefully checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.

[^0]: * The ON response time will be $120 \mu \mathrm{~s}$ maximum and OFF response time will be $400 \mu \mathrm{~s}$ maximum even if the response times are set to 0 ms due to internal element delays.

[^1]: ＊1．For Units with both inputs and outputs，refer to the connection patterns for both input and output connections．
 ＊2．The inputs are NPN．For PNP inputs，reverse the polarity of the external power supply connections to the power supply terminals on the Connector－Terminal Block Conversion Unit．

