MX2/RX/LX Drive Programming
 Model:

MX2 series inverter
RX series inverter
LX series inverter

USER'S MANUAL

Table of Contents

1- Introduction 5
1-1 Handling of this Instruction Manual 5
1-2 Safety Instruction 5
1-3 Preparation and System configuration 6
2- Specifications 7
3- Drive Programming Editor. 8
3.1- Saving and loading programs 9
3.2- Editor 9
3.3- Toolbar 10
3-3-1 Common Commands 10
3-3-2 Commands for the Flowchart Editor 11
3-3-3 Commands for the Text Editor 11
3.4- Shortcut Keys 12
3.5- Designer Area 12
3.6- Toolbox window 15
3.7- Block Parameters window 16
3.8- Properties window 17
3.9- Output window 18
3.10- Creating a program with Flowchart Editor 18
3.11- Creating a program with Text Editor 19
3.12- Run a program 19
3.13- Comments - Text Editor 19
3.14- \#Alias definition - Text Editor 20
3.15- \#Region definition - Text Editor 21
3.16- Conversion from Flowchart to Text 21
3.17- Conversion from Text to Flowchart 21
3.18- Find \& Replace function 22
4- Drive Program structure 23
4.1- Tasks 23
4.2- Subroutines 24
5- Drive Programming user variables 25
5.1- Initial Data 25
$U(00)$ to $U(31)$ or User parameters 25
UL(00) to UL(07) or Internal User parameters 25
5.2- Setting Variables 25
Set-Freq 25
ACCEL 25
DECEL 26
5.3- Inverter Monitor Variables
FM 26
lout 26
Dir. 26
PIB-FB 26
F-CNV 26
Tmon 27
Vout. 27
Power 27
Run-Time 27
On-Time 27
UMon(0) to UMon(2) 27
POS 28
ERR-CNT 28
ERR(1)-ERR(6) 28
DCV 28
STATUS 28
5.4- Terminal Variables 29
$X(00)-X(11)$ 29
Xw 29
$Y(00)-Y(06)$ 29
Yw 29
XA(0)-XA(2) 30
YA(0)-YA(2) 30
UB(00)-UB(07) 31
UBw 31
TC(0)-TC(7) 31
TD(0)-TD(7) 31
TDw. 31
5.5- Digital input Functions 32
5.6- Digital Output Functions 34
6- Drive Programming Instructions 36
6.1- Control Commands 36
Entry 36
End 36
Call 36
Sub 36
End Sub 36
Go To 38
On Trip 39
If. 40
Ifs/ Else / End If 41
Select / Case / End Select 42
For / Next 43
While / Wend 44
Until / Loop 45
Wait 46
6.2- Arithmetic and Logic Commands 47
= (Substitution) 47
Addition 47
Subtraction 48
Multiplication 48
Division 49
Mod 49
Abs 50
And 51
Or. 52
XOr 53
Not 54
Inc 55
Dec 56
6.3- Input/Output Control Commands 57
Var $=X(i)$ 57
Var $=X w$ 58
$Y(i)=$ value 59
$\mathrm{Yw}=$ value 60
func $=$ value 61
Var = func. 62
Var $=\mathrm{UB}$ (i) 63
$\mathrm{Var}=\mathrm{UBw}$ 64
UB(i) = value 65
UBw = value 66
6.4- Timer Control Commands 67
Delay 67
Timer Set 68
Timer Off 69
6.5- Parameter Control Commands 70
ChgParam 70
MonParam 71
EepWrt 72
RtcSet 73
6.6- Inverter Control Commands 74
Run-FW 74
Run-RV 74
Stop 74
Set-Freq 74
Trip 76
Accel 77
Decel 77
7- Troubleshooting 78
8- Drive Programming Parameters - General Precautions 79
8.1- Parameters list affected by setting order 79
8.2- Parameters list affected by Rated Current(\%) 79
8.3- Parameters list affected by PID enabled/disabled 80
9- Insertion Points (MX2 \& RX) 81
9.1- 'Frequency' before ACC/DEC 81
9.2- 'Frequency' after ACC/DEC 81
9.3- ‘Deviation’ before PID block 81

1-Introduction

This Instruction Manual explains how to use the Drive Programming software for the Omron MX2/RX/LX Series Inverter. Be sure to read this Instruction Manual carefully before using Drive Programming, and keep it on hand for future reference.

1-1 Handling of this Instruction Manual

- The contents of this Instruction Manual are subject to change without prior notice.
- No part of this Instruction Manual may be reproduced in any form without the publisher's permission.
- If you find any incorrect description, missing description or have a question concerning the contents of this Instruction Manual, please contact the publisher.

1-2 Safety Instruction

Be sure to read this Instruction Manual, Inverter Instruction Manual, and appended documents thoroughly before using Drive Programming and the inverter.

Before creating user programs for the inverter, also refer to the Inverter Instruction Manual and configuration software (CX-Drive) Instruction Manual for the necessary related Knowledge, and ensure you understand and follow all safety information, precautions, and operating and handling instructions for the correct use of the inverter.

Always use the inverter strictly within the range of specifications described in the Inverter Instruction Manual and correctly implement maintenance and inspection to prevent fault from occurring.

When using the inverter together with optional products, also read the manuals for those products. Note that this Instruction Manual and the manual for each optional product to be used should be delivered to the end user of the inverter.

In this instruction manual you can find WARNINGS along the instructions
WARNING: Indicates that incorrect handling may cause hazardous situation, which may result in serious personal injury or death.

1-3 Preparation and System configuration

To create user programs with Drive Programming function of the inverter, you must prepare the following devices and software:
(1) $M X 2, R X, L X$ inverter
(2) Personal computer (PC) (Windows System)
-32-bit PC: Windows XP SP3, Windows Vista (any service pack) and Windows 7.
-64-bit PC: Windows Vista (any service pack) and Windows 7.
(3) Optional programming software CX-Drive

- MX2 inverter: CX-Drive version 2.0x or higher.
- RX inverter: CX-Drive 2.3 x or higher.
- LX inverter: CX-Drive 2.5x or higher.
(4) Optional PC-inverter connection cable. For MX2 it is a USB cable, For RX/LX, the converter cable USB to RJ-45 is required. Item codes:
- Item code name for MX2: AX-CUSBM002-E
- Item code name for RX/LX (2 option cables):
- 3G3AX-PCACN2, or
- USB CONVERTERCABLE

LX:

- Inverter port: Operator-connection port RJ-45.

RX:

- Inverter port: Operator-connection port RJ-45.

MX2:

- Inverter port: USB connector.

The following figure shows the basic system configuration for programming.

Optional programming software CX-Drive	Windows personal computer	Optional PC-Inverter cable	MX2, RX or LX Inverter
MX2: CX-Drive 2.0x or higher RX: CX-Drive 2.3 x or higher LX: CX-Drive 2.5 x or higher		- For MX2: AX-CUSBM002-E - For RX/LX (2 options): 3G3AX-PCACN2, or USB-CONVERTERCABLE	

Install CX-Drive on your Windows personal computer, and connect the personal computer to the inverter (MX2, RX or LX) via the PC-inverter connection cable.

After completing these preparations, you can operate Drive Programming Editor to create a user program and download it to the inverter.

The table below lists the main functions of Drive Programming Editor.

Function	Description
Programming Editor	Supports the input, editing, saving, reading, and printing of user programs
Compilation	Compile and edit a user program
Downloading and uploading	Downloads a user program to the inverter Uploads a user program from the inverter

2-Specifications

The table below lists the programming-related specifications of the Drive Programming function.

Item		Specification		
	Programming language	Flow Chart and Text language		
	Input device	Windows personal computer (OS: Windows XP-SP3, Windows Vista, Windows 7)		
	Max. program size	1024steps (The internal storage capacity of the inverter is 1024 steps or 6 Kilobytes.)		
	$\begin{aligned} & \text { Programming support } \\ & \text { function (programming } \\ & \text { software) } \end{aligned}$	-Editing (on Windows) / - Display (on Windows) -Program syntax check (on Windows) -Downloading, uploading, and full clearance of program		
	Execution format	Execution by interpreter in an execution cycle of 2 ms per instruction (possible subroutine call with nesting in up to 8 layers)		
	External input	Contact Signal		24 v open - collector input (using intelligent input terminals)
		Program run signal input		RX: Assign to the PRG terminal / Always run
				MX2: Assign to the PRG terminal / Always run
		Multifunction terminals		RX: Up to 8 terminals (X(00) to $\mathrm{X}(07)$)
				MX2: Up to 8 terminals (X(00) to X(07))
		General-purpose analog input		XA(0): 0 to 10V (O terminal)
				XA(1): 4 to 20mA (OI terminal)
				XA(2): 0 to 10V (O2 terminal) (Only RX)
	External Output	General-purpose output terminal		RX: Up to 6 terminals (Y(00) to $\mathrm{Y}(05)$)
				MX2: Up to 3 terminals ($\mathrm{Y}(00)$ to $\mathrm{Y}(02)$)
		General-purpose analog output		YA (0): Assignable to the EO terminal (FM terminal for RX)
				YA (1): Assignable to the AM terminal
				YA (2): Assignable to the AMI terminal (Only RX)
00030000000	Instructions	-Loop (For) / - Unconditional branching (Goto) / -Time control (Wait) -Conditional branching (If Then, Ifs Then Else, Select Case, Until, and While) -Subroutine (call, sub) / - Others (Entry, End, Sub, End Sub, Inc, and Dec) (2) Arithmetic instructions -Arithmetic operation (+,-,*,/) / - Remainder (Mod) / -Substitution (=) -Absolute value (Abs) / - Logic operation (Or, And, Xor, and Not) (3) Input/Output control -General-purpose input/output (bit input, word input, bit output, and word output) - Reading of inverter input terminal. (4) Timer control: - Delay operation / -Timer control (5) Parameter control: - Rewriting of parameters by reselecting code on the operator's display		
	Number of variables	User-defined variable	U (0)	to U (31) (32 variables)
		Internal user variable	UL	to UL (07) (8 variables)
		Set frequency	SET	
		Acceleration time	ACC	
		Deceleration time	DEC	
		Monitoring variable		ut, Dir, PID-FB, F-CNV, Tmon, Vout, Power, RUN-Time, ONIsCnt (Only RX), POS, STATUS, DCV, ERR CNT, ERR(1), $\operatorname{ERR}(3), \operatorname{ERR}(4), \operatorname{ERR}(5)$, and $\operatorname{ERR}(6)$
		Bit commands		, CF1, CF2,CF3,CF4,JG,DB,SET,TCH,FRS,EXT,USP,CS,SFT, , STA, STP, F/R, PID, PIDC, UP, DWN, UDC, OPE, SF1, SF2, F4, SF5, SF6, SF7, OLR, TL, TRQ1-2, BOK, LAC, PCLR, ADD, ATR, KHC, AHD, CP1-3, ORL, ORG, SPD, RS485, HLD, ROK,
		Output Functions		A1, FA2, OL, OD, AL, FA3, OTQ, UV, TRQ, RNT, ONT, THM, BER, ZS, DSE, POK, FA4, FA5, OL2, ODc, OIDc, FBV, NDc, LOG2, LOG3, WAC, WAF, FR, OHF, LOC, IRDY, FWR, RVR, WCO, WCOI, FREF, REF, SETM, EDM.
		General-purpose input contact	LX:	00) to X(06) (7 contacts)
			RX:	(00) to X (07) (8 contacts)
				X(00) to $\mathrm{X}(07)$ (8 contacts)
		Extended IO option input contact		07) to X(11) (3G3AX-EIO-E expansion card)
			RX:	
			MX2	----
		General-purpose output contact	LX:	00) to $\mathrm{Y}(03)$ (4 contacts)
			RX:	00) to $\mathrm{Y}(05)$ (6 contacts)
			MX2	$\mathrm{Y}(00)$ to $\mathrm{Y}(02)$ (3 contacts)
		Extended output contact	LX:	(04) to Y(06) (3G3AX-EIO-E expansion card)
			MX2	RX : -----
		Internal user contact	UB) to UB (7) (8 contacts)
		Internal timer contact	TD	to TD (7) (8 counter contacts)
		Internal timer counter	TC	to TC (7) (8 counters)
		Inverter input/output	Spe	cation by code on the remote operator's display
		User Monitor	UMo	(00) to UMon(02) (3 user monitors)
		User trip	Mak	the inverter trip (10 trips)

3- Drive Programming Editor

Drive Programming Editor allows the user to design drive programs in an intuitive way. CX-Drive provides a way to create drive programs, compile them, transfer them to and from the drive, start and stop their execution, and other related tasks.
You can open this function by clicking on Drive Programming in the workspace of a drive which supports it, or selecting Program | Program Editor from the Drive menu, or with the CX-Drive toolbar button檁.

Please create a new CX-Drive File by clicking on the menu File / New. The New Drive window will appear (Image 1). Select the Drive Type and press OK button. Then it will appear on the Workspace (Image 2).

Making double-click to the Drive Programming option, the Drive Programming Editor will appear.

3-1 Saving and loading programs

A drive program is automatically saved when the drive document which contains it is saved.
When a CX-Drive document is opened, the drive program which it contains, if any, is automatically loaded. You can display it by opening the Program Editor.

Alternatively, you can export a drive program, to save it independently of other drive information. To do so, use the Program / Export Program command in the Drive menu. Enter the name of the file to be used. The file will be saved with extension driveprogram.

A drive program can be imported with the Program / Import Program command in the Drive menu.

3-2 Editor

The Program Editor is the main window of the Drive Programming function.

圈 M $\times 2$ Project

The window area consists of a toolbar with common commands, and a designer area where the program is displayed as a text.

3-3 Toolbar

The Program Editor window contains the following commands:

3-3-1 Common Commands

Commands	Image	Description
New task (Flowchart)	T	It allows creating a new Flowchart task for the program, up to the maximum number of tasks allowed. Tasks are parts of the program which are executed independently of each other.
New Task (Text)	Tr	It allows creating a new Text task for the program, up to the maximum number of tasks allowed. Tasks are parts of the program which are executed independently of each other.
New Subroutine (Flowchart)	\mathbf{S}	It allows creating a new Flowchart subroutine. A subroutine is a part of the program which is called from a task.
New Subroutine (Text)	sit	It allows creating a new Text subroutine. A subroutine is a part of the program which is called from a task.
Rename Current Task/Subroutine	It	It allows to rename the current task/subroutine.

3－3－2 Commands for the Flowchart Editor

Commands	Image	Description
Zoom in	＋	It increases the zoom level．
Zoom out	Q	It decreases the zoom level．
Zoom Reset	9	It restores the zoom to its initial value．
Select Mode	\＄	It allows the user to select one or more elements of the program， by click－and－drag with the mouse cursor．This mode is active by default．
Pan Mode	和	It allows the user to move the extent of the view． in any direction while keeping the same scale，by click－and－drag．
Horizontal Align Left	产	It aligns horizontally the left sides of the selected blocks．
Horizontal Align Middle	产	It aligns horizontally the middles of the selected blocks．
Horizontal Align Right	$\stackrel{\square}{\square}$	It aligns horizontally the right sides of the currently selected blocks．
Vertical Align Top	吅	It aligns vertically the top sides of the selected blocks．
Vertical Align Middle	2	It aligns vertically the middles of the selected blocks．
Vertical Align Bottom	$\xrightarrow{\square \square}$	It aligns the bottom sides of the selected blocks．
Orientation	Orientation－	It selects a preferred orientation for connecting the blocks．
Auto－arrange	离	It arranges the elements of the flowchart automatically in the currently selected orientation．
Show contacts	므	It toggles display／hide of the contacts of the blocks，which are placeholders for the beginning and ending of arrow connections
Show	Show－	It allows you to select a display style of the program．（Text only， Icon Only，Icon and Text，or Name，Icon and Arguments）．

3－3－3 Commands for the Text Editor

Commands	Image	
Find	It finds a text on the program code．	
Replace	I	It replaces a text on the program code．
Increment Indentation	E	It increases the indentation of the selected text．
Decrement Indentation	B	It decreases the indentation of the selected text．
Format Selected Text	三	It applies the automatic formatting to the selected text．
Comment Selected Text	三	It transforms the selected rows of text to comments．
Uncomment Selected Text	In	It uncomments the selected rows of text．
Convert Text to Flowchart	It converts current text Task／Subroutine to Flowchart	
Convert whole program to Flowchart	It converts whole program to Flowchart．	
Convert Flowchart to Text	号	It converts current Flowchart Task／Subroutine to text．
Convert whole Program to Text	It converts whole program to Text．	

3-4 Shortcut Keys

The following Keyboard shortcuts can be applied to the designer area.

- Ctrl + X: Cut
- Ctrl + C: Copy
- Ctrl + V: Paste
- Ctrl + Z: Undo
- Ctrl + Y: Redo
- Ctrl + A: Select All
- Ctrl + F: Find function
- Ctrl + L: Lock
- Ctrl + P: Pin
- Ctrl + Space: Code Snippets
- Tab: Select Next
- Shift + Tab: Select Previous
- Arrow Keys: Move selected element
- Home, End, Page Up, Page Down: Navigate through the graph
$\cdot+$: Zoom In
- -: Zoom Out

3-5 Designer Area

The designer area will display the current design of the program.

This area may have different pages, organized in tabs. Each tab is either a Task or a Subroutine in Flowchart or Text.
The designer is created with one default tab, which is a Text Task.
When a program is compiled without error, an icon with a circled green arrow highlights the starting point of each Flow chart task.

With text editor, the output window will indicate if the program is compiled successfully.

For programs compiled with errors, a red icon with an exclamation mark identifies the erroneous blocks with Flowchart Editor. Placing the mouse on the error icon displays the compile error, which can also be seen in the Error List.

With Text Editor, in the output window will appear the errors of the program. The error will be showed with a red underline.
\qquad
Dummy UL01 :=A038

A Task or Subroutine may be deleted, or renamed, by right-clicking on the tab title.

Right-clicking on an area which is not an element of the flowchart displays a popup menu which allows you to Paste elements that you have previously copied, or to select all the elements.

Right-clicking on a Flowchart block element it shows a popup menu with more options

Right-clicking on a selected Text it shows a popup menu with more options

The available menu commands with Flowchart editor are described below.

- Bring To Front places the element graphically in front of other elements.
- Send To Back places the element graphically in back of other elements.
- Pin fixes the element to its current position in the graph. It will not be moved in click-and-drag operations.
- Lock acts like Pin and, besides, sets the properties of the element as read-only.
- Cut deletes the element and saves it in the clipboard, for further pasting.
- Copy saves the element in the clipboard, for further pasting.
- Paste puts the contents previously copied in the clipboard into the design area. Note that after copying elements, you can also paste them to other contexts; for example, as images in a Microsoft Office application.

The available menu commands with Text editor are described below.

- Find looks for the selected text on the program code.
- Replace exchange the selected text on the program code.
- Cut deletes the element and saves it in the clipboard, for further pasting.
- Copy saves the element in the clipboard, for further pasting.
- Paste puts the contents previously copied in the clipboard into the design area. Note that after copying text elements, you can also paste them to other contexts; for example, as text in a Microsoft Office application.
- Go to Subroutine jumps to the selected text subroutine
- Go to Label jumps to the selected text label.
- Undo reverts the latest change.
- Redo recovers the most recently undone change.
- Help will show the CX-Drive help.

3-6 Toolbox window

The Toolbox window allows you to add blocks to the Program Designer by drag and drop. It displays the blocks supported for a particular drive, organized in categories.

The Toolbox is displayed when Drive Programming is entered. You can also show or hide it by clicking on Drive Programming | Toolbox in the View menu.

The Toolbox is displayed by default docked at the rightmost side of CX-Drive. You can resize it as needed to better display its elements. Also, you can toggle its docking by right clicking near the window's edges.

You can also choose its displays style by right-clicking on it with the mouse. Three styles are available: Large Icons, Small Icons, and List. In any style, placing the mouse cursor on a block will show a short help text for it.

Click on any category title to display the blocks which belong to that category.

3-7 Block Parameters window

The Block Parameters window allows the user to edit drive program parameters which act as variables of the program. The parameters are organized in categories. Block parameters is displayed when Drive Programming is entered. You can also show or hide it by clicking on Drive Programming | Block Parameters in the View menu.

Block Parameters is displayed by default docked at the rightmost side of CX-Drive. You can resize it as needed to better display its elements. Also, you can toggle its docking by right clicking near the window's edges.

Block Parameters
User Parameters P100 0 P101 0 P102 0 P103 0 P104 0 P105 0 P106 0 P107 0 P108 0 Drive Programming User parameters. Set range is 0 to 65535

To change the value of a block parameter, place the cursor at its row and click on the edition box to the right of its name. Enter the new value. CX-Drive will warn you if the value exceeds the valid range. At the lower part of the window, a help text for the block parameters is displayed.

3-8 Properties window

The Properties window allows the user to edit the properties of the drive program block which is currently selected in the Flowchart Program Editor.

Properties are displayed when Drive Programming is entered. You can also show or hide it by clicking on Drive Programming | Properties in the View menu.

Properties are displayed by default docked at the rightmost side of CX-Drive. You can resize it as needed to better display its elements. Also, you can toggle its docking by right clicking near the window's edges.

To change one block command argument, place the cursor at its row and click on the edition box to the right of its name.

- If the block argument has options, a second click of the mouse will unfold the available options for you to select.
- If the block argument does not have options, clicking on its current value will enable you to change it by typing a new one. CX-Drive will warn you if the value exceeds the valid range.

If the block argument can have both an option and a custom value, clicking on the unfold sign at the right of the cell will unfold the available options, whereas clicking anywhere in the cell text, you will be able to edit it.

3-9 Output window

It shows the compilation errors and warnings of the currently edited drive program after it is compiled. Errors will prevent the program to be correctly compiled. Warnings will allow compilation, but advise customer of abnormal conditions.

. The 0 Errors Error(s) button toggles displaying error in the list.

- The $\dagger 0$ Warnings Warning(s) button toggles displaying warnings in the list.
. The (i) 0 Messages Message(s) button toggles displaying informative message in the list.

Messages in the list show the following information:

- Date: The date and time when the error was generated.
- Component: Identifies the element with an error.
- Description: The text of the error or warning message.

The list is automatically cleared every time a Compile is done.

3-10 Creating a program with Flowchart Editor

Follow the steps described below to create a drive program.

1. Open the Program Editor. The Drive Programming auxiliary windows (Toolbox, Block Parameters, Properties and Error List) will be displayed automatically.
2. Select on the menu "New Tab" New Task (flowchart) or New Subroutine(flowchart).
3. Drag each block of the program from the Toolbox window to the Flowchart Program Editor.
4. After dragging a block, edit its properties by clicking on it and edit the arguments in the Properties window.
5. Connect the blocks accordingly.
6. Edit the drive program variables in the Block Parameters window.
7. You may now compile the program, transfer it to the drive, export it, etc.

Alternatively, you can connect to a drive which has a program and transfer it, following the simple steps described below.

1. Open the Program Editor. The auxiliary Drive Programming windows (Toolbox, Block Parameters and Properties) will be displayed automatically.
2. Click the Transfer from Drive button in the program Editor Toolbar. The program will be transferred from the drive and automatically displayed in the Program Editor designer area.
3. You may now edit the program, compile it, transfer it to the drive, export it, etc.

When a drive program is present, you can also transfer it from and to the drive with the Transfer to Drive and Transfer from Drive buttons of the CX-Drive toolbar. In this case, a message dialog will ask you whether to transfer the parameters, the program or both.

3-11 Creating a program with Text Editor

Follow the steps described below to create a drive program:

1. Open the program Editor. The Drive Programming auxiliary windows (Toolbox, Block

Parameters, Properties and Error List) will be displayed automatically.
2. The three ways to edit the code are:
a. Manual typing
b. Calling code snippets (Ctrl+Space)
c. Drag \& Drop commands from Toolbox window (like Flowchart Editor)
3. You may now compile the program, transfer it to the drive, export it, etc.

Note 1: The Text editor is supported from CX-Drive version 2.50.
Note 2: Text and Flowchart Tasks/Subroutines can be used simultaneously within same program.

3-12 Run a program

After transferring the program to the device, you can run the program with the command or setting the next inverter parameters:

- MX2 and RX:

Parameter	Value	Description
A017 - Drive Programming Selection	0: Disabling	Drive Programming program will be stopped.
	1: PRG terminal	Drive Programming program will run by digital input. Set terminal to PRG function.
	2: Always	Drive Programming program will be always running.

. LX:

Parameter	Value	Description
F025 - Drive Programming function selection	$0:$ Disable	Drive Programming program will be disabled.
	1: Enable	Drive Programming program will be Enabled.
F026 - Drive Programming RUN trigger selection	$0:$ TRM('PRG' terminal)	Drive Programming program will run by terminal. Set terminal to PRG function.
	1: PARAM (setting F025=enable)	Drive Programming program will run if F025 $=$ enable

3-13 Comments - Text Editor

Only it is possible to add comments in a Text editor task or subroutine. To add a comment in a text line press the character """ follow by the comment. The comment will be showed in a green color format.

- Examples

```
#alias global Time as U(10) ' Timer time
#alias global AppTimer as TD(0) ' Timer TD(0)
#alias global Temp as UL(05) ' Internal use
```

Note: if you convert a Text task or subroutine to Flowchart, the comments will be lost.

3-14 \#Alias definition - Text Editor

Only it is possible to define an alias in a Text editor task and before the command 'entry'. It's not possible to define an alias in a subroutine.

Alias definitions are user-friendly names given to parameters, variables, commands and numerical constants. There are two kinds of alias definition:

- Local alias: this alias definition only can be used in the current task and his subroutines, and not in the other tasks and subroutines that the program could have. This is the format for a local alias definition inside a task:

```
#alias local alias as replacement
```


- Examples

```
#alias local ON_ as 1
#alias local OFF as 0
#alias local Monītor_1 as UMon(0)
#alias local MaxFrequency as A004
#alias local Count as U(00)
#alias local Dummy_1 as UL(00)
entry
```

- Global alias: this alias definition can be used in all the tasks and subroutines. This is the format for a global alias definition:

- Examples

```
#alias global alias as replacement
#alias global const_100 as 100
#alias global Acceleration as F002
#alias global Deceleration as F003
#alias global Time as U(10)
#alias global AppTimer as TD(0)
#alias global Temp as UL(05)
entry
```

Note 1: The alias will be lost converting a text task/subroutine to flowchart. CX-Drive will show a message advising about this issue.
Note 2: reserved words cannot be used like an alias. A compilation error will appear.

3-15 \#Region definition - Text Editor

A Region definition can be only defined in a text task or subroutine. It is useful to define code regions to clarify the program source code.

- Examples

```
##region Alias
    #alias global const_100 as 100
    #alias global Acceleration as F002
    #alias global Deceleration as F003
    #alias global Time as U(10)
    #alias global AppTimer as TD(0)
    #alias global Temp as UL(05)
    #endregion
    entry
##region Start
    Acceleration := const_100
    Deceleration := const_100
    Time := 500
    Temp := 10000
    set-freq := 1000
    Fw := 1
    #endregion
##region Stop...
```


3-16 Conversion from Flowchart to Text

There are two options to convert from Flowchart program to text:

Command	Image	Description
Convert Flowchart to text	$\square, ~ \equiv$	It converts current Flowchart Task/Subroutine to text.
Convert whole program to text	y	It converts whole program to text.

3-17 Conversion from Text to Flowchart

There are two option to convert from Text to Flowchart:

Command	Image	Description
Convert Text to Flowchart	It converts current Flowchart Task/Subroutine to text.	
Convert whole program to		It converts whole program to text.
Flowchart		

3-18 Find \& Replace function

Function only available in text mode. It allows look for an exchange code inside your text program.
To use Find function press the icon or the shortcut keys ' $\mathbf{C t r l}+\mathrm{F}$ '.
To use Replace function press the ${ }^{A}{ }^{\text {a }}$ B icon or the shortcut keys ' $\mathbf{C t r l}+\mathbf{F}$ '

4- Drive Program structure

The programming language is a Flowchart/Text language.
The inverter can process five parallel tasks.
The processing is as following diagram.

+												
	Task 1		Task 2		Task 3		Task 4		Task 5		Elapsed time	
$\stackrel{\rightharpoonup}{v}$	line	Code										
$\stackrel{\text { v }}{ }$	1	Entry		Entry		Entry		Entry		Entry	2 [ms]	
v	2	top	6	\| top	11	top	14	top	19	top	4	
	3	Process A	7	Process B	12	Process C	15	Process D	20	Process E	6	
등	4		8	\|	13	\| Goto top	16		21	\|	8	
$\stackrel{3}{3}$	5	Goto top	9	\|	11	top	17	\|	22	1	10	
0	2	top	10	Goto top	12	Process C	18	Goto top	23	1	12	
¢	3	Process A	6	\| top	13	\| Goto 11	14	top	24	Goto top	14	
	4		7	Process B	11	top	15	Process D	19	top	16	
E	5	Goto top	8		12	Process C	16		20	Process E	18	
O	2	top	9		13	Goto top	17		21		20	
	3	Process A	10	Goto top	11	top	18	Goto top	22	\|	22	
v	4		6	\| top	12	Process C	14	\| top	23	1	24	
$\stackrel{\text { v }}{\text { v }}$	5	Goto top	7	Process B	13	\|Goto top	15	Process D	24	Goto top	26	
$\stackrel{\text { v }}{ }$	2	top	8		11	top	16		19	top	28	
v	3	Process A	9	1	12	Process C	17		20	Process E	30	
-	4		10	Goto top	13	Goto top	18	Goto top	21		32 [ms]	

Inside each task, subroutines can be associated, but maximum nesting (call inside a subroutine call) is 8 level depth.

4-1 Tasks

When Drive Programming it's open, an empty task appears by default: Task01. With the right mouse click we can Delete Current Task or Rename Current Task.

Every task must begin with Entry and must finish with the End Control Commands.

4-2 Subroutines

Subroutines are useful to organize your program into parts of code that you can reuse in other programs or in the same program. For insert a subroutine press the button $\boldsymbol{S}^{\boldsymbol{s}} \mathrm{S}$ or a new subroutine will appear. Like on Tasks, you can delete or rename a subroutine.

Every subroutine must begin with the Sub block, and end with the EndSub Control Command.

Flowchart		Text	
T] Proaram	S. Program: Test		
		T] Proaram	Sid Program: Test
		sub	
		endsub	

The subroutine is executed via the call command with the subroutine name.

Flowchart		Text	
T) Program	\$] Proaram: Test		
		Ti) Program	Sill Program: Test
		entry	
		call Test	
		end	

It is only possible to call a subroutine that is associated with the task. To be used with other task, a copy of the subroutine is necessary on the task.

5- Drive Programming user variables

5-1 Initial Data

$\mathbf{U (0 0)}$ to $\mathbf{U (3 1)}$ or User parameters

$\mathbf{U}(00)$ $\mathbf{U (3 1)}$	to	Description	Range of values	Default	Unit	Data size
	User variable	0 to 65535	Data stored in P100 to P131	-	Unsigned 1-word	R/W

User variables are the general-purpose functions that can be used as unsigned 1 -word. The data written from a drive program to the user-defined variables is not stored in the inverter's EEPROM. The variables will restore the initial settings when the inverter power is turned off. The user-defined variables correspond to inverter parameters "P100" to "P131". You can also change the settings of user-defined variables from the digital operator. The changes made from the digital operator will be stored in EEPROM. This is also possible to emulate from drive programming by using the EepWrt command.

The variables P129 to P131 ($\mathrm{U}(29)$ to $\mathrm{U}(31)$) are saved at power down of the inverter automatically. This function may not work under heavy load (motor output current) or too small inverter (low capacity in DC bus). In case of trouble it is recommended to disable the inverter output to preserve the energy in the capacitors.

UL(00) to UL(07) or Internal User parameters.

UL(00) - $\mathbf{U L (0 7) ~}$	Description	Range of values	Default	Unit	Data size	Attribute
	Internal user variable	-2^{31} to $2^{31}-1$	0	-	Signed 2 -word	R/W

Internal user variables are the general-purpose functions that can be used as unsigned 2-word variables, for example, to temporarily store arithmetic operation results. The initial values can be set via the initial program data.

5-2 Setting Variables

Set-Freq	Description	Range of values	Default	Unit	Data size	Attribute
	Output frequency setting	0 to 40000	0	0.01 Hz	Unsigned 1 -word	R/W

When $A 001=7$ (Freq. ref. from Drive Programming), it becomes the frequency set point of the inverter. Always reflects the reading of parameter F001, regardless the setting of A001. This variable is not stored in the inverter EEPROM. It will be restored to initial setting after power cycle.
When the inverter receives an operation command ($\mathrm{FW}=1$ or $\mathrm{RV}=1$), it accelerates the motor up to the frequency that was set last.

ACCEL	Description	Range of values	Default	Unit	Data size	Attribute
	Acceleration time setting	1 to 360000	Note 1	0.01 sec	Unsigned 2-word	R/W

This variable can be used to read and write the motor acceleration time in the inverter. It is enabled only when the setting of accel/decel time input selection (P031) is "03" (PRG). (Please note that it does not correspond to the setting of inverter parameter "F002"). The data written to this variable is not stored in the inverter's EEPROM. It restores initial value after power cycle.

Note 1: By default (when the inverter power is turned on), the acceleration time follows the setting of the inverter parameter "F002", "F202", or "F302". For details, refer to the Inverter Instruction Manual.
Note 2: When a program writes a value to this variable, the value is reflected in the inverter in a 40-ms cycle, which conforms to the standard inverter specifications.

DECEL	Description	Range of values	Default	Unit	Data size	Attribute		
	Deceleration time setting	1 to 360000	Note 1	0.01 sec	Unsigned	2-word	R/W	
:---								

This variable can be used to read and write the motor deceleration time in the inverter. The deceleration time setting using this variable is enabled only when the setting of accel/decel time input selection (P031) is "03" (PRG). (The setting of this variable does not correspond to the setting of inverter parameter "F003"). The data written to this variable is not stored in the inverter's EEPROM. This variable will restore the initial setting when the inverter power is turned off.

Note 1: By default (when the inverter power is turned on), the deceleration time follows the deceleration (1) time setting "F003", "F203" or "F303". For details, refer to the Inverter Instruction Manual.
Note 2: When a program writes a value to this variable, the value is reflected in the inverter in a $40-\mathrm{ms}$ cycle, which conforms to the standard inverter specifications.

5-3 Inverter Monitor Variables (This units does not always corresponds with the display units)

FM	Description	Range of values	Default	Unit	Data size	Attribute
(d001)	Output frequency monitor	0 to 40000	-	0.01	Unsigned 1 -word	R

The data monitored with this variable corresponds to the data monitored by the output frequency monitor (d001). This variable is read-only.

lout	Description	Range of values	Default	Unit	Data size	Attribute
(d002)	Output current monitor	0 to 9999	-	0.01 $\%$	Unsigned 1 -word	R

The data monitored with this variable corresponds to the data monitored by the output current monitor (d002). The monitored data indicates the ratio of present output current to rated current of the inverter. This variable is read-only. For details, refer to the Inverter Instruction Manual.

Dir	Description	Range of values	Default	Unit	Data size	Attribute
(d003)	Rotation direction monitor	0: Stop $1:$ Normal rotation 2:Reverse rotation	-	-	Unsigned 1 -word	R

The data monitored with this variable corresponds to the data monitored by the rotation direction monitor (d003). This variable is read-only.

PID-FB	Description	Range of values	Default	Unit	Data size	Attribute
(d004)	Process variable (PV), PID feedback monitoring	0 to 9990000	0	0.01 $\%$	Unsigned 2-word	R

The data monitored with this variable corresponds to the data monitored by the process variable (PV), PID feedback monitor (d004). This variable is read-only.

F-CNV	Description	Range of values	Default	Unit	Data size	Attribute
(d007)	Scaled output frequency monitor	0 to 3996000	-	0.01	Unsigned 2 -word	R

The data monitored with this variable corresponds to the data monitored by the scaled output frequency monitor (d007). This variable is read-only.

Tmon	Description	Range of values	Default	Unit	Data size	Attribute
$(\mathrm{d} 012)$	Torque monitor	-200 to 200	-	$\%$	Unsigned 1 -word	R

The data monitored with this variable corresponds to the data monitored by the torque monitor (d012). This variable is read-only.

Vout	Description	Range of values	Default	Unit	Data size	Attribute
$(\mathrm{d} 013)$	Output Voltage monitor	0 to 6000	-	0.1 v	Unsigned 1 -word	R

The data monitored with this variable corresponds to the data monitored by the output voltage monitor function (d013). This variable is read only.

Power	Description	Range of values	Default	Unit	Data size	Attribute
$(\mathrm{d} 014)$	Power monitor	0 to 9999	-	0.1 Kw	Unsigned 1 -word	R

The data monitored whit this variable corresponds to the data monitored by the power monitor (d014). This variable is read only.

RUN-Time	Description	Range of values	Default	Unit	Data size	Attribute
$(\mathrm{d} 016)$	Run Time monitor	0 to 999999	-	Hour	Unsigned 2-word	R

The data monitored with this variable corresponds to the data monitored by the cumulative operation RUN time monitor (d016). This variable is read only.

On-Time	Description	Range of values	Default	Unit	Data size	Attribute
$(\mathrm{d} 017)$	Power-on time monitor	0 to 999999	-	Hour	Unsigned 2 -word	R

The data monitored with this variable corresponds to the data monitored by the cumulative power-on time monitor (d017). This variable is read-only.

UMon(0) to Umon(2)	Description	Range of values	Default	Unit	Data size	Attribute
(d025 to d027)	User Parameter monitor 0 to 2	-2^{31} to $2^{31}-1$	0	-	Signed 2 -word	R/W

The data monitored with these variables corresponds to the data monitored on d025, d026 and d027. These are monitors available for the user Drive Programming application

POS	Description	Range of values	Default	Unit	Data size	Attribute
(d030)	Current Position monitor	$-\left(2^{28}-1\right)$ to $2^{286}-1$	-	1	Signed $2-\left(2^{30}-1\right)$ to $\left.2^{30}-1\right]$	-

The data referenced with this variable corresponds to the data monitored by the current position monitor (d030).
With RX when "03" (high-resolution absolute position control) has been selected for control pulse setting (P012), the range in brackets "[]" applies.

ERR- CNT	Description	Range of values	Default	Unit	Data size	Attribute
(d080)	Trip counter monitor	0 to 65535	-	№ of times	Unsigned 1 -word	R

The data monitored with this variable corresponds to the data monitored by the trip counter monitor (d080).

ERR(1)- ERR(6)	Description	Range of values	Default	Unit	Data size	Attribute
$($ d081- d086)	Trip monitor 1 to 6	0 to 127	-	-	Unsigned 1 -word	R

The data monitored with these variables correspond to the data monitored by trip monitors 1 to 6 (d081 to d086).

DCV	Description	Range of values	Default	Unit	Data size	Attribute
(d102)	DC voltage monitor	0 to 9999	-	0.1 Vdc	Unsigned 1 -word	R

The data referenced with this variable corresponds to the data monitored by the DC voltage monitor (d102).

STATUS	Description	Range of values	Default	Unit	Data size	Attribute
	Inverter status monitor	-	-	-	Unsigned 1 -word	R

This variable can be used to reference inverter status information.
The information is reflected with the following bit weights:

Bit 9 to 15	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserve	Under voltage	Reset	Over voltage suppression	Over current suppression	Overload suppression	Retry	Reverse	Trip	Run

5-4 Terminal Variables

Input/Output Control Instructions

$\mathbf{X}(\mathbf{0 0})-\mathbf{X}(\mathbf{1 1)}$	Description	Range of Values	Data Size	Attribute
	Input terminal 0 to 11	$0: \mathrm{Off}$	bit	R

See table below for each inverter function number:

Input	Inverter function number		
	MX2	RX	LX
X(00) - M11	56	56	49
X(01) - MI2	57	57	50
X(02) - M13	58	58	51
X(03)-M14	59	59	52
X(04)-M15	60	60	53
X(05) - M16	61	61	54
X(06)-M17	62	62	55
X(07) - M18	63	63	56
X(08) - M19	--	--	57
X(09)-M110	--	--	58
X(10) - M111	--	--	59
X(11)-MI12	--	--	60

Xw	Description	Range of Values	Data Size	Attribute
	Input terminal (word)	0 to 65535	Unsigned 1 -word	R

Instruction to access contact inputs by word. Each bit reflects one of the inputs.

$\mathbf{Y (0 0)}-\mathrm{Y}(06)$	Description	Range of Values	Data Size	Attribute
	Output terminal 0 to 6	$0: \mathrm{Off}$	bit	R/W

See table below for each inverter function number:

Output	Inverter function number		
	MX2	RX	LX
$\mathrm{Y}(00)-$ MO1	44	44	35
$\mathrm{Y}(01)-$ MO2	45	45	36
$\mathrm{Y}(02)-$ MO3	46	46	37
$\mathrm{Y}(03)-$ MO4	--	47	38
$\mathrm{Y}(04)-$ MO5	--	48	39
$\mathrm{Y}(05)-$ MO6	--	49	40

Yw	Description	Range of Values	Data Size	Attribute
	Output terminal (word)	0 to 65535	Unsigned 1 -word	R/W

This variable can be used to change the digital output terminals in units of word. Each output is one bit.

$\mathbf{X A}(0)-\mathrm{XA}(2)$	Description	Range of Values	Data Size	Attribute
XA(0)	General-purpose analog input (O terminal)	0 to 10000	Unsigned 1- word (0.01\%)	R
XA(1)	General-purpose analog input (OI terminal)			
XA(2)	General-purpose analog input (O2 terminal) only for RX and LX			

These variables can be used to monitor the analog input to the O and Ol and O 2 terminals. Terminals [O]-[L], [OI]-[L], [O2]-[L]. Associated parameters (A011 to A015, A101 to A105, A111 to A114). XA(2) is only available for Rx and LX.

$\mathbf{Y A (0) - Y A (2)}$	Description	Range of Values	Data Size	Attribute
YA(0)	General-purpose analog output (EO terminal for MX2) (FM terminal for RX and LX)			
	General-purpose analog output (AM terminal)	0 to 10000	Unsigned 1 -word (0.01%)	R/W
	General-purpose analog output (AMI terminal) only for RX and LX			

With this variables we can monitor the analog outputs (any multifunction assigned to them), or write analog output if $\mathrm{YA}(0)$ to $\mathrm{YA}(2)$ are assigned to analog multifunction parameters (C027, C028 and C029). Value is reflected as a data range from 0% to 100.00%. YA(2) is only available for RX and LX.

UB(00) - UB(07)	Description	Range of Values	Data Size	Attribute
	Internal user contact (bit access)	$0:$ Off $1:$ On	bit	R/W

These variables can be used as bit variable for the user.

UBw	Description	Range of Values	Data Size	Attribute
	Internal user contact (word access)	0 to 255	Unsigned 1 -word	R/W

The bit variables reflected as single word.

TC(0) - TC(7)	Description	Range of Values	Data Size	Attribute
	Timer counters (0 to 7) (Unit: 10 ms)	0 to $2^{31}-1$	Unsigned 2-word	R/W

The timer counters "TC(0)" to "TC(7)" operate as 31-bit-free-running timer counters. They start with the user program startup and are incremented in a $10-\mathrm{ms}$ cycle.

When a timer-start instruction (timer set) or delay operation instruction (delay on or delay off) is executed, the timer counter corresponding to the instruction operates as the counter for output to a specified timer contact. In this case, the counter is cleared to zero when the instruction is executed, start counting, and then stops counting upon reaching the specified count. When a timer-stop instruction (timer off) is executed, the timer counter corresponding to the instruction is cleared to zero and operates as a 31-bi-free-running timer counter that is incremented in a 10-ms cycle.

TD(0) - TD(7)	Description	Range of Values	Unit	Attribute
	Timer contact output $0-7$ (bit	$0:$ Off	Unsigned	R
	access)	$1:$ On	1 -word	R

The data in timer contact output variables "TD(0)" to "TD(7)" change only when these variables are specified in the timer-start instruction (timer set) or delay operation instruction (delay on or delay off). A timer contact output variable is set to " 0 "(off) when the counter corresponding to the contact output is cleared to zero, the variable is set to " 1 "(on) when the counter stops counting (the timing action selected finish).
While a timer counter variable "TC(k)" is being used for a free-running timer counter, timer contact output variable "TD(k)" corresponding to the timer counter variable retains its status.

TDw	Description	Range of Values	Unit	Attribute
	Timer contact output (word access)	0 to 255	Unsigned 1 -word	R

It access to the timer counter outputs as word.

5-5 Digital input Functions

These variables correspond to the settings available for the digital multifunction input terminals. Setting the variable to 1 will simulate the function as if the terminal was closed in a digital input. It is interesting to note that the multifunction does not need to be configured in order to use the function.
E.g. FW := 1 will generate a RUN Forward command (as used in some examples).

Please refer to the inverter user manual for details about the individual functions.
Values: 0: Off
1: On

Function	Description	MX2	RX	LX	Usage	Comment
FW	Forward	\checkmark	X	X	R/W	C001-C009 = 00
RV	Reverse	\checkmark	\checkmark	x	R/W	C001-C009 = 01
CF1-CF4	Multi-speed 1-4	\checkmark	\checkmark	x	R/W	$\begin{aligned} & \mathrm{C} 001-\mathrm{C} 009=02- \\ & 05 \end{aligned}$
JG	Jogging	\checkmark	\checkmark	x	R/W	C001-C009 = 06
DB	External Brake	\checkmark	\checkmark	X	R/W	C001-C009 = 07
SET	Second control	\checkmark	\checkmark	\checkmark	R/W	C001-C009 = 08
2CH	$2^{\text {nd }}$ acceleration/deceleration time	\checkmark	\checkmark	x	R/W	C001-C009 = 09
FRS	Free run	\checkmark	\checkmark	\checkmark	R/W	C001-C009 = 11
EXT	External trip	\checkmark	\checkmark	\checkmark	R/W	C001-C009 = 12
USP	Unattended start protection	\checkmark	\checkmark	x	R/W	C001-C009 = 13
CS	Change from commercial power	\checkmark	\checkmark	x	R/W	C001-C009 = 14
SFT	Software lock	\checkmark	\checkmark	$\sqrt{ }$	R/W	C001-C009 = 15
AT	Change of analog input	$\sqrt{ }$	\checkmark	x	R/W	C001-C009 = 16
SET3	$3{ }^{\text {ra }}$ control	x	\checkmark	x	R/W	C001-C009 = 17
RS	System reset	\checkmark	\checkmark	\checkmark	R/W	C001-C009 = 18
STA	Start of 3 wires	\checkmark	\checkmark	x	R/W	C001-C009 = 20
STP	Stop of 3 wires	\checkmark	\checkmark	x	R/W	C001-C009 = 21
F/R	Forward/Reverse of 3 wires	\checkmark	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R/W	C001-C009 = 22
PID	Switch PID	\checkmark	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R/W	C001-C009 = 23
PIDC	Reset of PID integration	\checkmark	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R/W	C001-C009 = 24
CAS	Control gain switching	x	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R/W	C001-C009 = 26
UP	Increasing speed from remote	\checkmark	\checkmark	x	R/W	C001-C009 = 27
DWN	Decreasing speed from remote	\checkmark	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R/W	C001-C009 = 28
UDC	Clear data from remote operation	\checkmark	\checkmark	x	R/W	C001-C009 = 29
OPE	Change to operator	\checkmark	\checkmark	x	R/W	C001-C009 = 31
SF1-SF7	Multi-speed bit 1-7	\checkmark	$\sqrt{ }$	x	R/W	$\begin{aligned} & \mathrm{C} 001-\mathrm{C} 009=32- \\ & 38 \end{aligned}$
OLR	Overload protection switch	\checkmark	\checkmark	x	R/W	C001-C009 = 39
TL	Torque Limit Enable	\checkmark	\checkmark	x	R/W	C001-C009 = 40
TRQ1-2	Torque Limit Selection 1-2	\checkmark	\checkmark	x	R/W	$\begin{aligned} & \mathrm{C} 001-\mathrm{C} 009=41- \\ & 42 \end{aligned}$
PPI	P/PI switching	x	\checkmark	x	R/W	C001-C009 = 43
BOK	Brake Confirmation	$\sqrt{ }$	\checkmark	x	R/W	C001-C009 = 44
ORT	Orientation	X	\checkmark	x	R/W	C001-C009 = 45
LAC	LAD Cancel	\checkmark	\checkmark	x	R/W	C001-C009 = 46
PCLR	Clear Position Deviation	\checkmark	\checkmark	x	R/W	C001-C009 = 47
STAT	Pulse train position command input permission	X	$\sqrt{ }$	x	R/W	C001-C009 = 48
ADD	Add Setting Frequency	$\sqrt{ }$	\checkmark	x	R/W	C001-C009 = 50
F-TM	Forced Terminal Block	\checkmark	\checkmark	x	R/W	C001-C009 = 51
ATR	Torque reference input permission	\checkmark	\checkmark	x	R/W	C001-C009 = 52
KHC	Integrated power clear	\checkmark	\checkmark	x	R/W	C001-C009 = 53
SON	Servo ON	x	\checkmark	x	R/W	C001-C009 = 54
FOC	Preliminary excitation	x	\checkmark	x	R/W	C001-C009 = 55
$\begin{aligned} & X(00)- \\ & X(07) \\ & \hline \end{aligned}$	Drive Programming (MI1-MI8)	\checkmark	$\sqrt{ }$	x	R/W	$\begin{aligned} & C 001-C 009=56- \\ & 63 \end{aligned}$
AHD	Analog command on hold	\checkmark	\checkmark	x	R/W	C001-C009 = 65
CP1-3	Position command selection 1-3	\checkmark	\checkmark	x	R/W	$\begin{aligned} & \mathrm{C} 001-\mathrm{C} 009=66- \\ & 68 \end{aligned}$
ORL	Origin return limit signal	\checkmark	\checkmark	x	R/W	C001-C009 = 69
ORG	Origin return start signal	\checkmark	\checkmark	x	R/W	$\mathrm{C} 001-\mathrm{C} 009=70$

Drive Programming

FOT	Forward driving stop	X	$\sqrt{ }$	X	R/W	C001-C009 = 71
ROT	Reverse driving stop	X	\checkmark	x	R/W	C001-C009 = 72
SPD	Speed/Position switching	$\sqrt{ }$	\checkmark	x	R/W	C001-C009 = 73
PCNT	Pulse counter	X	$\sqrt{ }$	X	R/W	C001-C009 = 74
PCC	Pulse counter clear	X	$\sqrt{ }$	x	R/W	C001-C009 = 75
GS1	GS1 input	\checkmark	X	X	R/W	C001-C009 = 77
Function	Description	MX2	RX	LX	Usage	Comment
GS2	GS2 input	$\sqrt{ }$	X	X	R/W	C001-C009 = 78
RS485	Inverter communication start terminal	$\sqrt{ }$	x	x	R/W	C001-C009 = 81
PRG	Executing Drive Program	$\sqrt{ }$	x	X	R/W	C001-C009 = 82
HLD	HOLD Acceleration / deceleration stopping	$\sqrt{ }$	x	X	R/W	C001-C009 = 83
ROK	Operation OK signal	$\sqrt{ }$	x	x	R/W	C001-C009 = 84
DISP	Display limitation terminal	\checkmark	X	X	R/W	C001-C009 = 86
UP	Upward RUN	X	X	$\sqrt{ }$	R/W	C001-C009 = 00
DOWN	Downward RUN	X	X	$\sqrt{ }$	R/W	C001-C009 = 01
SPD1	Multi-speed 1 setting	X	X	\checkmark	R/W	C001-C009 = 02
SPD2	Multi-speed 2 setting	x	$\frac{x}{x}$	\checkmark	R/W	C001-C009 = 03
SPD3	Multi-speed 3 setting	$\frac{\mathrm{x}}{\mathrm{x}}$	x	\checkmark	R/W	C001-C009 = 04
OLR	Change OL-level	X	X	\checkmark	R/W	C001-C009 = 32
TL	Torque Limit enable	x	x	\checkmark	R/W	C001-C009 = 33
TRQ1	Change Torque Limit 1	x	x	\checkmark	R/W	C001-C009 = 34
TRQ2	Change Torque Limit 2	x	x	\checkmark	R/W	C001-C009 = 35
PCLR	Clear the current position	x	x	\checkmark	R/W	$\mathrm{C} 001-\mathrm{C} 009=40$
KHC	Kwh clear	X	X	\checkmark	R/W	C001-C009 = 46
$X(00)-X(11)$	Drive Programming	X	X	\checkmark	R/W	$\begin{aligned} & \text { C001-C009 = 49- } \\ & 60 \end{aligned}$
EMP	Em-Power Operation	x	x	\checkmark	R/W	C001-C009 = 61
INS1	Inspection 1	x	X	\checkmark	R/W	C001-C009 = 62
INS2	Inspection 2	X	X	\checkmark	R/W	C001-C009 = 63
COK	Contactor check signal	x	x	$\sqrt{ }$	R/W	C001-C009 = 64
BOK	Brake check signal	X	X	\checkmark	R/W	C001-C009 = 65
FP1-FP6	Floor position 1 to 6	X	x	\checkmark	R/W	$\begin{aligned} & \mathrm{C} 001-\mathrm{C} 009=66- \\ & 71 \end{aligned}$
PAL	Auto learning data latch trigger	x	x	\checkmark	R/W	C001-C009 = 72
TCL	Torque bias latch trigger	x	x	\checkmark	R/W	$\mathrm{C} 001-\mathrm{C009}=73$
LVS	Leveling signal	x	x	\checkmark	R/W	C001-C009 = 74
NFS	Near floor signal	x	x	$\sqrt{ }$	R/W	$\mathrm{C} 001-\mathrm{C009}=75$
PRG	Program run	x	x	\checkmark	R/W	C001-C009 = 76
CMC	Control Mode change	X	X	\checkmark	R/W	C001-C009 = 77

Note:The LX inverter functions are available for the digital multifunction input terminals P140-P144 (Multi-Input [Ex.IN1-5] \rightarrow 3G3AX-EIO-E: LX extra I/O board)

5-6 Digital Output Functions

These variables correspond to the settings available for the digital multifunction output terminals. The variable can read and used as it would be for an external device connected to the digital output configured for the function.
It is interesting to note that digital outputs are not required to be assigned in order to use the function within the program (in other words, no waste of digital outputs required).

Function	Description	MX2	RX	LX	Usage	Comment
RUN	Running	\checkmark	\checkmark	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=00$
FA1	Reaching constant speed	\checkmark	\checkmark	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=01$
FA2	Greater than setting frequency	\checkmark	\checkmark	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=02$
OL	Overload preannounce	\checkmark	\checkmark	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=03$
OD	PID deviation overrate	\checkmark	\checkmark	X	R	$\mathrm{C} 021-\mathrm{C} 026=04$
AL	Trip signal	\checkmark	\checkmark	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=05$
FA3	Only the setting frequency	\checkmark	\checkmark	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=06$
OTQ	Over torque/under torque	\checkmark	\checkmark	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=07$
IP	Signal during m. power interruption	x	\checkmark	\checkmark	R	C021-C026 = 08
UV	Under voltage signal	\checkmark	\checkmark	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=09$
TRQ	Torque limitation signal	\checkmark	\checkmark	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=10$
RNT	RUN time over	\checkmark	\checkmark	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=11$
ONT	ON time over	\checkmark	\checkmark	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=12$
THM	Thermal warning	\checkmark	\checkmark	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=13$
ZS	0 Hz detection signal	$\frac{\mathrm{x}}{\mathrm{x}}$	x	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=14$
POK	Positioning complete	x	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=16$
FA4	Set frequency overreached 2	x	x	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=17$
FA5	Set frequency reached 2	X	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=18$
BRK	Brake open	\checkmark	\checkmark	\times	R	$\mathrm{C} 021-\mathrm{C} 026=19$
BER	Brake error	\checkmark	\checkmark	X	R	$\mathrm{C} 021-\mathrm{C} 026=20$
ZS	Zero speed signal	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=21$
DSE	Speed deviation overrate	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=22$
POK	Positioning operation complete	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=23$
FA4	Greater than setting frequency 2	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=24$
FA5	Only the setting frequency 2	\checkmark	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R	$\mathrm{C} 021-\mathrm{C} 026=25$
OL2	Overload preannounce 2	\checkmark	$\sqrt{ }$	x	R	$\mathrm{C} 021-\mathrm{C} 026=26$
ODc	Analog O break detection	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=27$
OIDc	Analog Ol break detection	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=28$
O2Dc	Analog 2 disconnection detection	x	$\sqrt{ }$	x	R	$\mathrm{C} 021-\mathrm{C} 026=29$
WAC	Capacitor life warning	X	X	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=30$
FBV	PID feedback comparison	\checkmark	\checkmark	X	R	$\mathrm{C} 021-\mathrm{C} 026=31$
NDC	Communication break detection	\checkmark	\checkmark	X	R	$\mathrm{C} 021-\mathrm{CO26}=32$
LOG1	Result of logic operation 1	\checkmark	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R	$\mathrm{C} 021-\mathrm{C} 026=33$
LOG 2	Result of logic operation 2	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=34$
LOG 3	Result of logic operation 3	\checkmark	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R	$\mathrm{C} 021-\mathrm{C} 026=35$
LOG 4	Result of logic operation 4	x	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R	$\mathrm{C} 021-\mathrm{C} 026=36$
LOG 5	Result of logic operation 5	x	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=37$
LOG 6	Result of logic operation 6	x	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=38$
WAC	Condenser life-span preannounce	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=39$
WAF	Fan life-span preannounce	\checkmark	\checkmark	X	R	$\mathrm{C} 021-\mathrm{C} 026=40$
FR	Start contact signal	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{CO26}=41$
OHF	Cooling fan over heat preannounce	\checkmark	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R	$\mathrm{C} 021-\mathrm{C} 026=42$
LOC	Low electricity signal	\checkmark	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R	$\mathrm{C} 021-\mathrm{C} 026=43$
$\mathrm{Y}(00)$	Drive Programming (MO1)	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=44$
$\mathrm{Y}(01)$	Drive Programming (MO2)	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=45$
$\mathrm{Y}(02)$	Drive Programming (MO3)	\checkmark	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R	$\mathrm{C} 021-\mathrm{C} 026=46$
$\mathrm{Y}(03)$	Drive Programming (MO4)	x	\checkmark	X	R	$\mathrm{C} 021-\mathrm{C} 026=47$
$\mathrm{Y}(04)$	Drive Programming (MO5)	X	\checkmark	X	R	$\mathrm{C} 021-\mathrm{CO26}=48$
Y(05)	Drive Programming (MO6)	X	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R	$\mathrm{C} 021-\mathrm{C} 026=49$
IRDY	Operation setup complete	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=50$
FWR	Forward running signal	\checkmark	\checkmark	$\frac{\mathrm{x}}{\mathrm{x}}$	R	$\mathrm{C} 021-\mathrm{C} 026=51$
RVR	Reverse running signal	\checkmark	\checkmark	X	R	$\mathrm{C} 021-\mathrm{C} 026=52$
MJA	Serious failure signal	$\sqrt{ }$	$\sqrt{ }$	$\frac{\mathrm{x}}{\mathrm{x}}$	R	$\mathrm{C} 021-\mathrm{C} 026=53$
WCO	Window comparator O	\checkmark	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=54$
WCOI	Window comparator OI	$\sqrt{ }$	\checkmark	x	R	$\mathrm{C} 021-\mathrm{C} 026=55$
WCO2	Window comparator O2	x	\checkmark	X	R	$\mathrm{C} 021-\mathrm{C} 026=56$
MPS	Magnet pole position search	x	\times	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=57$

Drive Programming

Function	Description	MX2	RX	LX	Usage	Comment
FREF	Command frequency sel. mode	\checkmark	x	X	R	$\mathrm{C} 021-\mathrm{CO26}=58$
REF	Command operation mode	\checkmark	x	x	R	$\mathrm{C} 021-\mathrm{C} 026=59$
SETM	Setting motor	\checkmark	x	X	R	$\mathrm{C} 021-\mathrm{C} 026=60$
EDM	STO operation monitor signal	\checkmark	x	X	R	$\mathrm{C} 021-\mathrm{C} 026=62$
IRDY	Inverter ready	X	x	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=44$
FWR	Forward rotation	$\frac{\mathrm{x}}{\mathrm{x}}$	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=45$
RVR	Reverse rotation	X	x	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=46$
MJA	Major failure	X	x	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=47$
OL2	Overload advance signal 2	x	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=19$
TH-C	Thermal warning (CTL)	$\frac{\mathrm{x}}{\mathrm{x}}$	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=20$
NDC	Network disconnection	x	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=23$
WAF	Cooling-fan speed drop	x	x	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=31$
FR	Starting contact signal	x	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=32$
OHF	Heat sink overheat warning	x	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=33$
LOC	Low-current indication signal	x	x	$\sqrt{ }$	R	C021-C026 = 34
$\mathrm{Y}(00)$	Drive Programming (MO1)	x	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=35$
$\mathrm{Y}(01)$	Drive Programming (MO2)	x	x	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=36$
$\mathrm{Y}(02)$	Drive Programming (MO3)	x	x	\checkmark	R	C021-C026 = 37
$\mathrm{Y}(03)$	Drive Programming (MO4)	X	x	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=38$
$\mathrm{Y}(04)$	Drive Programming (MO5)	x	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=39$
$\mathrm{Y}(05)$	Drive Programming (MO6)	$\frac{\mathrm{x}}{\mathrm{x}}$	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=40$
$\mathrm{Y}(06)$	Drive Programming (MO7)	x	x	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=41$
CON	Contactor control signal	x	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=51$
BRK	Brake Control signal	x	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=52$
UPS	UPS protect direction search status	$\frac{\mathrm{x}}{\mathrm{x}}$	x	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=54$
UPD	UPS protect direction	$\frac{\mathrm{x}}{\mathrm{x}}$	x	$\sqrt{ }$	R	$\mathrm{C} 021-\mathrm{C} 026=55$
GMON	Gate suppress monitor	x	x	\checkmark	R	C021-C026 = 56
SEQ	SEQ error	x	x	\checkmark	R	$\mathrm{C} 021-\mathrm{C} 026=58$

Note:The LX inverter functions are available for the digital multifunction output terminals P145-P147 (Multi-Output [Ex.OUT1-3] \rightarrow 3G3AX-EIO-E: LX extra I/O board)

6- Drive Programming Instructions

6-1 Control Commands

Entry				
Command	Description	Arguments		
	It indicates the beginning of the task.			
	Format			
Note: It is compulsory to have Entry at the begging of each task.				

End		
Command	Description	Arguments
	It indicates the end of the task.	---

Call		
Command	Description	Arguments
Call	It jumps to a subroutine	• Subroutine: Subroutines are identified by a name or alias defined by the user.
Format		
call <subroutine>		
Note: After the execution of the subroutine ends, the next instruction line after the call is executed.		

Sub			
Command	Description	Arguments	
Sub	It indicates the beginning of the subroutine.		
Format			
Note: It is compulsory to have Sub at the beginning of each subroutine.			

End Sub			
Command	Description	Arguments	
	It indicates the end of a subroutine.	---	
	Format		
Note: It is compulsory to have End Sub at the end of each subroutine.			

Example

A forward and reverse run at 60 Hz is repeated continuously between two limits $X(01)$ and $X(02)$.

Go To		
Command	Description	Arguments
Use this instruction to branch processing unconditionally to the step labeled with label name.		
Gotormat		
- Label: A name that is used to identify a particular function block in the task.		
GoTo <label>		
Note: The instruction must also be connected to the next program block you want to be executed. This is necessary to make clear the flow of the program.		

Example

Change parameter P100 in order to test the GoTo function with this sample. When P100=1, P101 starts counting. When P100<>1 stops counting.

On Trip				
Command	Description	Arguments		
Ontrip	This instruction makes conditional branching in case a trip in the inverter occurs.	- Label: A name that is used to identify a particular function block in the task.		
Format				On Trip goto <label>
:---				
Note: The On Trip instruction works as a trigger arming. The instruction is executed once, if any trip occurs the program jumps immediately to the designated label, then the On trip trigger is disarmed.				

Example

When the digital input is set to ON value, then P100 parameter is incrementing every second. If a trip is generated (like by external trip input) then P103 increments count. And then goes to the beginning of the task.

If		
Command	Description	Arguments
$\Omega_{1 f}^{?}$	Jump to a label when a condition is satisfied.	- Condition: A comparison between two variables or constant with the format<Left hand value><Comparison><Right Hand Value> -Left hand value: any variable or constant(range -128 to 127) -Comparison: =, <, >, <=, >=, <> -Right hand value: any variable or constant(range -128 to 127) - Label: A name that is used to identify a particular function block in the task.
Format		
If <condition> GoTo <label>		

Example

(

Change parameter P100 in order to test the GoTo function with this sample. When P100 $=1$, P101 starts counting. When P100<>1 stops counting.

Ifs/ Else / End If		
Command	Description	Arguments
	This instruction executes different portion of code based on a condition. When the condition is met, this instruction executes <instruction set 1 >. When the condition is not met, this instruction executes <instruction set 2>.	- Condition: A comparison between two variables or constant with the format <Left hand Value><Comparison><Right hand Value> -Left hand value: any variable or constant (range-128 to 127) -Comparison: $=,<,>,<=,>=,<>$ -Right hand value: any variable or constant (range -128 to 127) - Instruction set 1: One or more instructions, until Else instruction. It can contain nested instructions (up to 8 levels) - Instruction set 2: One or more instructions, until End If instruction. It can contain nested instructions (up to 8 levels)
Format		
Ifs <conditio <instructio Else <instructio Endif	Then set 1> set 2>	

Example

The example changes the value of P103 based on the value of parameter P100 and P101. If P100 is bigger than P101 then P103=10. If not P103=20.

Select / Case / End Select		
Command	Description	Arguments
	This instruction allows multiple program sections to be executed depending on a variable value. For a particular CASE section it Executes <instruction set n> when <conditional variable> matches <conditional value n> If <conditional variable> doesn't match any of the CASE section the <instruction set if no other> (Case Else) is executed. This instruction is convenient when multiple choices have to be done from parameter value. It makes simple some if/then structures. This instruction is recommended to organize program by using subroutine calls as instruction set.	- Conditional variable: the instruction select variable. - Conditional value x: variable value. - Instruction set x: One or more instructions, until next case or end select. It can contain nested instructions (up to 8 levels).
Format		
Select <con Case <cond <instructio Case <cond <instructio ... Case Else <instructio End select	nal variable> nal value 1> et $1>$ nal value 2> et 2> et if no other>	

Example

The P101 parameter is set to $100,200,300$ or 500 depending on the value of the P100 parameter (1, 2, 3 or any other, respectively).

| For / Next | | |
| :---: | :--- | :--- | :--- |
| Command | Description | Arguments |

Example

This example make the variable $U(00) P(100)$ count from 1 to 8 each second.

| While / Wend | | |
| :--- | :--- | :--- | :--- |
| Command | Description | |

Example

The code will increment P101 parameter every second while the digital input $X(00)$ is closed (whilewend loop). If it is open, P101 is not increased (GoTo-label loop loop; the while - wend portion is not executed). Digital input has to be configured in the multifunction input.

Until / Loop		
Command	Description	Arguments
		- Condition: A comparison between two variables or constants with the format <Left hand value><Comparison><Right Hand Value>
《	Executes <instruction set> until a	-Left hand value: any variable or constant (range -128 to 127)
Until		-Comparison: =,<,>,<<,>=,,<> -Right hand value: any variable or constant (range -128 to 127)
		- Instruction set: One or more instructions, until Loop instruction. It can contain nested instructions (up to 8 levels)
Format		
Until <conditi <instructio Loop	set>	

Example

Flowchart	Text
	```entry :again until X(00) = 1 wait 100 loop inc U(01) goto again end```

This code will increment while the digital input is closed. If it is open, then it will stay in the until-loop portion. The check of the input is every second because of this structure. Digital input has to be configured in the multifunction input.


Example Wait Time: wait during a time period.

Flowchart	Text
	```entry :loop_ wait 100 inc U(00) goto loop_ end```

The P100 parameter is increased every second.
Example Wait condition: wait for condition.

The program waits until the digital input is closed (you need to set one of the multifunction inputs for this), and then P100 parameter is increased.

6-2 Arithmetic and Logic Commands

= (Substitution)		
Command	Description	Arguments
\leftarrow	Assigns <value> to <result>.	- Result: any variable. - Value: any variable or constant (range -2147483648 to 2147483647).
Format		
<result> = <value>		
Warning: Drive programming does not control overflow/underflow. The application should take care.		

Example

The P100 and P101 parameters are set to 200.

+ (Addition)		
Command	Description	Arguments
$\square+$ +	Adds <value 1> and <value 2>.	- Result: any variable. - Value 1: any variable or constant (range -128 to 127) - Value 2: any variable or constant (range -2147483648 to 2147483647).
Format		
<result> = <value 1> + <value 2>		
Warning: Drive Programming does not control overflow/underflow. The application should take care.		

Example

Flowchart	Text
	```entry U(00) := 200 U(01) := 500 U(02) := U(00) + U(01) end```

[^0]| - (Subtraction) |  |  |
| :---: | :---: | :---: |
| Command | Description | Arguments |
| $\square$ | Subtracts <value 2> from <value 1>. | - Result: any variable. <br> - Value 1: any variable or constant (range <br> -128 to 127). <br> - Value 2: any variable or constant (range -2147483648 to 2147483647 ). |
| Format |  |  |
| <result>= <value 1> - <value 2> |  |  |
| Warning: Drive Programming does not control overflow/underflow. The application should take care. |  |  |

Example


The P102 parameter calculation result is 300 .

*(Multiplication)			
Command	Description		Arguments
$\square$	Multiplies <value 1> by <value 2>.		- Result: any variable.   - Value 1: any variable or constant (range   -128 to 127).   - Value 2: any variable or constant (range -2147483648 to 2147483647 ).
Format			
<result> = <value 1> * <value 2>			
Warning: Drive Programming does not control overflow/underflow. The application should take care.			
Example			
Flowchart		Text	
		```entry \(u(00):=2\) \(u(01):=500\) \(\mathrm{U}(02):=\mathrm{U}(00)^{*} \mathrm{U}(01)\) end```	

The P102 parameter is set to 1000 .

/(Division)		
Command	Description	Arguments
-	Divides <value 1> by <value 2>.	- Result: any variable. - Value 1: any variable or constant (range -128 to 127) - Value 2: any variable or constant (range -2147483648 to 2147483647).
Format		
<result> = <value 1> / <value 2>		
Warning: Drive Programming does not control overflow/underflow. The application should take care.		

Example

The P102 parameter calculation result is 250.

\% (Mod)		
Command	Description	Arguments
\% $\mathrm{\%}$ (Remainder of division.	- Result: Any variable. - Value 1: any variable or constant (range -128 to 127). - Value 2: any variable or constant (range -2147483648 to 2147483647)
Format		
<result> = <value 1> Mod <value 2>		
Warning: Drive Programming does not control overflow/underflow. The application should take care.		

Example

Flowchart	Text
	```entry U(00) := 2 U(01) := 500 U(02) := U(01) mod U(00) end```

The P102 parameter calculation result is 0 .

Abs		
Command	Description	Arguments
$\|x\|$	Absolute value.	- Result: any variable.   - Value: any variable or constant   (range -2147483648 to 2147483647).
Abs	Format	
<result> = Abs <value>		
Warning: Drive Programming does not control overflow/underflow. The application should take care.		

## Example



The UL(01) variable is set to 200.

And				
Command	Description			Arguments
	And (logical product).			- Result: any variable.   - Value 1: any variable or constant (range   -128 to 127).   - Value 2: any variable or constant (range -2147483648 to 2147483647).
\&	Value 1	Value 2	Result	
And	0	0	0	
	0	1	0	
	1	0	0	
	1	1	1	
Format				
<result> = <value 1> And <Value 2>				
Warning: Drive Programming does not control overflow/underflow. The application should take care.				

## Example



The initial P104 parameter calculation result is 4, as 6 in binary format is 00000110 and 12 in binary format is 00001100 , so the result of the and operation is 00000100 that is 4 in decimal format If P102 and P103 are changed by the user, then P104 will recalculate accordingly.

Or				
Command	Description			Arguments
	Or (logical addition).			- Result: any variable.   - Value 1: any variable or constant   (range -128 to 127).   - Value 2: any variable or constant (range -2147483648 to 2147483647 ).
	Value 1	Value 2	Result	
Or	0	0	0	
	0	1	1	
	1	0	1	
Format				
<result> = <value 1> Or <value 2>				
Warning: Drive programming does not control overflow/underflow. The application should take care				

## Example



The initial P104 parameter calculation result is 14, as 6 in binary format is 00000110 and 12 in binary format is 00001100 , so the result of the operation is 00001110 that is 14 in decimal format. If P102 and P103 are changed by the user, then P104 will recalculate accordingly.

XOr				
Command	Description			Arguments
	XOr(exclusive-or)			- Result: any variable.   - Value 1: any variable or constant (range -128 to 127).   - Value 2: any variable or constant (range -2147483648 to 2147483647 ).
-	Value 1	Value 2	Result	
$\bigcirc$	0	0	0	
XOr	0	1	1	
	1	0	1	
	1	1	0	
Format				
<result>= <value 1> XOr <value 2>				
Warning: Drive Programming does not control overflow/underflow. The application should take care				

## Example



The initial P104 parameter calculation result is 10, as 6 in binary format is 00000110 and 12 in binary format is 00001100, so the result of the XOr operation is 00001010 that is 10 in decimal format. If P102 and P103 are changed by the user, then P104 will recalculate accordingly.

Not			
Command	Description		Arguments
	Not (negation)		- Result: any variable, except variables with bit data size (Note 1)   - Value: any variable or constant, except variables with bit data size (Note 1) (range -2147483648 to 2147483647).
	Value 1	Result	
Not	0	1	
	1	0	
Format			
<result> = Not<value>			
Note: Unexpected result will be obtained with instructions like UB(1) = Not UB(0).   Please use XOr command to negate variables with bit data size in Drive Programming as shown on the next examples:   - Example 1: UB(1) = UB(0) Xor 1   - Example 2: $\mathrm{UB}(2)=\mathrm{X}(00)$ Xor 1			
Warning: Drive Programming does not control overflow/underflow. The application should take care.			
Example			


Flowchart	Text
	```entry U(03) := 12 :loop_ U(04) := not U(03) goto loop_ end```

The initial P104 parameter calculation result is 65523, as 12 in binary format is 0000000000001100 , so the result of the not operation is 1111111111110011 that is 65523 in decimal format. If P103 is changed by the user, then P104 will recalculate accordingly.

Inc			
Command	Description	Arguments	
+1	Increments a value by 1.	- Value: any variable.	
Inc			
Format			
Inc<value>			
Warning: Drive Programming does not control overflow/underflow. The application should take care.			

Example

The P102 parameter is incremented by 1 every second.

Example

The P102 parameter is decremented by 1 every second.

6-3 Input/Output Control Commands

For memory optimization, use Input/Output Control Commands (4 bytes) instead of the Equal Arithmetic Command "=" (8 bytes).

Var $=\mathbf{X}(\mathrm{i})$		
Command	Description	Arguments
${ }_{\text {var }}^{+\infty}$	Instruction to access contact inputs. Reflects the state of the input.	- Variable: any variable (the value of the variable will be 0 or 1). - i: Number of the contact input (range 0 to 11).
Format		
<variable>=X(i)		
Note: The inputs have to be assigned to digital multifunction input (by the multifunction 56 to 63). $X(02)$ is not necessarily input 2 (depends where MF 58 is).		
$\mathrm{X}(00)=\mathrm{M} 11$		
$\mathrm{X}(01)=\mathrm{MI} 2$		
$\mathrm{X}(02)=\mathrm{MI} 3$		
$\mathrm{X}(03)=\mathrm{MI4}$		
X $(04)=$ M 15		
$\mathrm{X}(05)=\mathrm{MI6}$		
$\mathrm{X}(06)=\mathrm{MI7}$		
$\mathrm{X}(07)=\mathrm{MI} 8$		
$\mathrm{X}(08)=\mathrm{M} 19$		
$\mathrm{X}(09)=$ MI10		
$\mathrm{X}(10)=$ MI11		
$\mathrm{X}(11)=\mathrm{MI} 12$		
Note: more	tails in chapter 5-4 Terminal Variables	

Example

Flowchart	Te
	```entry :loop_ UMon(0) := X(01) goto loop_ end```

The state of the input terminal $X(01)$ is monitored on the d025 parameter.

Var $=\mathbf{X w}$		
Command	Description	Arguments
$\stackrel{+x_{0}}{ }$	Instruction to access contact inputs by word.   Each bit reflects one of the inputs.	- Variable: any variable.
Format		
<variable> = Xw		
Note: The inputs have to be assigned to digital multifunction input (by the multifunction 56 to 63 for MX2 and RX or 49 to 60 on LX)		
$\mathrm{Xw}=1 \rightarrow$ bit 0		
$\mathrm{Xw}=2 \rightarrow$ bit 1		
$\mathrm{Xw}=4 \rightarrow$ bit 2		
$\mathrm{Xw}=8 \rightarrow$ bit 3		
$X \mathrm{w}=16 \rightarrow$ bit 4		
$X \mathrm{w}=32 \rightarrow$ bit 5		
$\mathrm{Xw}=64 \rightarrow$ bit 6		
$X \mathrm{w}=128 \rightarrow$ bit 7 (only for RX and LX)		
$X \mathrm{w}=256 \rightarrow$ bit 8 (only for LX with extension I/O)		
Xw = 512 $\rightarrow$ bit 9 (only for LX with extension I/O)		
Xw $=1024 \rightarrow$ bit 10 (only for LX with extension I/O)$X w=2048 \rightarrow$ bit 11 (only for LX with extension I/O)		

## Example



This example acquires the state of the $X(02)-X(05)$ input terminals and outputs it to $Y(00)-Y(03)$ output terminals. To cut $X(00)-X(01)$, the $U(00)$ value is divided by 4. To cut $X(06)-X(07)$, the $U(00)$ value is masked by 15 .

$Y(i)=$ value		
Command	Description	Arguments
$n^{n+}$   Yi=value	Instruction to access digital outputs.	- i: Number of the contact output (range 0 to 6 )   - Value: any variable or constant.
Format		
$\mathrm{Y}(\mathrm{i})=<$ value>		
Note: The inputs have to be assigned to digital multifunction output (by the multifunction 44 to 49 for MX2 and RX and 35 to 41 for LX).		
$\mathrm{Y}(00)=\mathrm{MO} 1$		
$\mathrm{Y}(01)=\mathrm{MO} 2$		
$\mathrm{Y}(02)=\mathrm{MO} 3$		
$\mathrm{Y}(03)=\mathrm{MO} 4$		
$\mathrm{Y}(04)=\mathrm{MO5}$		
$\mathrm{Y}(05)=\mathrm{MO6}$		
$\mathrm{Y}(06)=\mathrm{MO} 7$		
Note: more d	tails in chapter 5-4 Terminal Variables	

Example


To test this example, initialize the user variables with the following value: $U(00)=1000, U(01)=2000$, $U(02)=3000 . Y(00)-Y(01)$ are sequentially turned on every 10 Hz step of the output frequency.

Yw = value		
Command	Description	Arguments
$\square$   $Y_{w=v a l u e}$	Instruction to access digital outputs by word.   Each bit reflects one of the outputs.	- Value: any variable or constant
Format		
Yw = <value>		
Note: The inputs have to be assigned to digital multifunction input (by the multifunction 44 to 49 for MX2 and RX, 35 to 41 for LX).		
$\mathrm{Yw}=1 \rightarrow$ bit 0		
$\mathrm{Yw}=2 \rightarrow$ bit 1		
$\mathrm{Yw}=4 \rightarrow$ bit 2		
$\mathrm{Yw}=8 \rightarrow$ bit 3 (only if expanded I/O board used)		
$\mathrm{Yw}=16 \rightarrow$ bit 4 (only if expanded I/O board used)		
$\mathrm{Yw}=32 \rightarrow$ bit 5 (only if expanded I/O board used, and enough outputs)		
$\mathrm{Yw}=64 \rightarrow \mathrm{~b}$	6 (only if expanded I/O board for LX is used)	

## Example



This example acquires the state of the $X(02)-X(05)$ input terminals and outputs it to $Y(00)-Y(03)$ output terminals.
To cut $X(00)-X(01)$, the $U(00)$ value is divided by 4. To cut $X(06)-X(07)$, the $U(00)$ value is masked by 15 .

func = value			
Command	Description	Arguments	
$f+$	Assigns the value of a variable to a   command of a terminal input.	• Function: any function of input terminal.   •Value: any variable or constant.	
Format			
<function> $=$ <value>			

## Example



A forward and reverse run at 60 Hz is repeated continuously.

Var = func			
Command	Description	Arguments	
$+\beta$   varffunc	A terminal output status is assigned to a   variable.	• Variable: any variable.   •Function: any function of output   terminal.	
Format			
<variable>=<function>			

## Example



The value of P100 is set to " 1 " if the ZS (zero speed signal) is on, otherwise is set to " 0 ".

Var = UB(i)		
Command	Description	Arguments
$\begin{aligned} & +{ }_{+\infty} \\ & \text { var=UBi } \end{aligned}$	Assigns the value of an internal user contact to a variable.	- Variable: any variable (value of the variable will be 0 or 1 ).   - i: Number of the user contact (range 0 to 7 )
Format		
<variable> = UB(i)		

## Example

Flowchart	Text
	```entry :loop_ ubw := 0 UB(0) := X(00) UB(1) := X(01) UB(2) := X(02) UMOn(0) := ubw Y(00) := UB(2) goto loop_ end```

The internal user contacts are cleared on the loop's $1^{\text {st }}$ instruction.
The status of the $X(00)-X(02)$ input terminals are stored in the $U B(0)-U B(2)$ internal user contacts and monitored on the d025 parameter.
Finally, the status of the $X(02)$ input terminal is set tot the $Y(00)$ output terminal.

Var = UBw		
Command	Description	Arguments
\square var=UBw	Assigns the value of the internal user contact as word (all together) to a word variable.	- Variable: any variable.
Format		
<variable> = UBw		
Note:		
$\mathrm{UBw}=1 \rightarrow$ bit 0		
$\mathrm{UBW}=2 \rightarrow$ bit 1		
$\mathrm{UBW}=4 \rightarrow$ bit 2		
$\mathrm{UBw}=8 \rightarrow$ bit 3		
$\mathrm{UBw}=16 \rightarrow$ bit 4		
$\mathrm{UBw}=64 \rightarrow \text { bit } 6$$\mathrm{UBw}=128 \rightarrow \text { bit } 7$		

Example

Flowchart	Text
	```entry :loop_ ubw := 0 UB(0) := X(00) UB(1) := X(01) UB(2) := X(02) UMon(0) := ubw Y(00) := UB(2) goto loop_ end```

The internal user contacts are cleared on the loop's $1^{\text {st }}$ instruction.
The status of the $\mathrm{X}(00)-\mathrm{X}(02)$ input terminals are stored in the $\mathrm{UB}(0)-\mathrm{UB}(2)$ internal user contacts and monitored on the d025 parameter.
Finally the status of the $X(02)$ input terminal is set to the $Y(00)$ output terminal.

UB(i) = value			
Command	Description	Arguments	
Ust   UBi=value	Assigns a value to an internal user   contact control.	•i: Number of the user contact   (range 0 to 7).   •Value: any variable or constant.	
Format			
UB(i) $=$ <value>			

## Example



The internal user contacts are cleared on the loop's $1^{\text {st }}$ instruction.
The status of the $X(00)-X(02)$ input terminals are stored in the UB(0)-UB(2) internal user contacts and monitored on the d025 parameter. Finally, the status of the $X(02)$ input terminal is set to the $Y(00)$ output terminal.

UBw = value		
Command	Description	Arguments
UBw=value	Assigns a value to the internal user contact controls.   Instruction to access internal user contact by word.	- Value: any variable or constant.
Format		
UBw = <value>		
Note:		
$\mathrm{UBw}=1 \rightarrow$ bit 0		
$\mathrm{UBw}=2 \rightarrow$ bit 1		
$\mathrm{UBw}=4 \rightarrow$ bit 2		
$\mathrm{UBw}=8 \rightarrow$ bit 3		
UBw $=16 \rightarrow$ bit 4		
$\mathrm{UBw}=32 \rightarrow$ bit 5		
$\mathrm{UBw}=64 \rightarrow$ bit 6		
$U B w=128 \rightarrow$		

## Example

Flowchart	Text
	```entry :loop_ ubw := 0 UB(0) := X(00) UB(1) := X(01) UB(2) := X(02) UMOn(0) := ubw Y(00) := UB(2) goto loop_ end```

The internal user contacts are cleared on the loop's $1^{\text {st }}$ instruction. The status of the $X(00)-X(02)$ input terminals are stored in the UB(0)-UB(2) internal user contacts and monitored on the d025 parameter. Finally, the status of the $X(02)$ input terminal is set to the $Y(00)$ output terminal.

6-4 Timer Control Commands

Delay		
Command	Description	Arguments
	This instruction sets the count of the timer in <value $2>$ and starts the timer counter. When the timer output "TD (K)" is turned on/off, <value $1>$ is turned on/off. It is important to note, that meantime counting proceeds, the <value 1> remains unchanged from original value.	- Value 1: any variable. - Value 2: any variable or constant (time in $10 \times \mathrm{ms}$) - \mathbf{K} : number of timer.
Format		
Delay on/off <value 1>TD(k)<value 2>		

Timing chart

Example

Sample program that activates/deactivates the FW instruction with Delay On/Delay Off instruction.

Timer Set		
Command	Description	Arguments
	Sets <value> in the timer and starts the counter. The timer starts from 0 and increments until <value>. Associated timer contact reflects status ("1" = finish timing)	- Value: any variable or constant (time in $10 \times \mathrm{ms}$) - K: number of timer (range 0 to 7)
Format		
Timer set TD(k) <value>		
Note: Timer value can be check in variable TC(k). Completion of timer can be checked in variable TD(k) (when it becomes " 1 ").		

Timing chart

Example

This program will set the timer $T D(0)$ to an increasing value each timer execution, taking longer time on each loop.

Timer Off				
Command	Description			Arguments
(H)off Timer0ff	Clears the timer counter (up counter) to zero, and starts it in free-running mode.	$\bullet \mathbf{k}$: number of timer (range 0 to 7)		
Format				
Timer off TD(k)				

Timing chart

Example

This example uses a fixed timer execution. But it is cancelled when digital input $X(01)$ is OFF.

6-5 Parameter Control Commands

ChgParam		
Command	Description	Arguments
$\overline{\overline{\bar{\zeta}}}$ChgParam	Changes the parameter's inverter setting specified by display code to a value. Any inverter parameter can be changed.	• Parameter: parameter code (Fxxx, Axxx, bXXX, Cxxx, Hxxx, Pxxx) •Value: any variable or constant.
Format		
ChgParam <parameter><value>		
Note: The same rules to parameter writing from operator panel or communications apply: Some parameters can not be written in certain mode of inverter (e.g. some parameters can not be changed during RUN condition). This instruction does not fix the parameter in EEPROM (EepWrt to be used for this purpose)		

Example

The F002 (acceleration time setting 1) value is increased by 1 every second.

MonParam		
Command	Description	Arguments
$\bar{R} \overline{\overline{\bar{\jmath}}}$ MonParam	Assigns the inverter's parameter content specified by display code to a variable.	- Parameter: parameter code (Fxxx, Axxx, bxxx, Cxxx, dxxx, Hxxx Pxxx). - Variable: any variable
Format		
MonParam<parameter><variable>		

Example

The value of the F001 parameter (output frequency setting) is monitored on the d025 parameter (user parameter monitor).

EepWrt		
Command	Description	Arguments
EepWirt	The command allows write into EEPROM the next ChgParam executed just after this command. (if two ChgParam follows an EepWrt, only for the first one will be saved).	---
Format		
EepWrt		
Note: Limitation of EepWrt:		
-If this command is executed in more than one task, ChgParam is executed in the sequence it is detected. For the second invocation of the command, a waiting time of typically 10 ms will occur before each ChgParam is executed. For example, when ChgParam is detected in task 1,2 and 3 at the same time, and the one in task 1 is executed at first, is necessary to wait 10 ms for task 2 and 20 ms for task 3. But when Eepwrt is not executed, ChgParam doesn't need this waiting time.		

Example: (only F002 is stored in EEPROM)

On executing the program, only F002 parameter is saved permanently from $U(02)$. After power off and on again, F003 will have the old value. The initial values of the $U(02)$ and $U(03)$ variables can be set on the program variables list or the P102, P103 parameters.

RtcSet		
Command	Description	Arguments
$\begin{aligned} & \text { (둥ㅇㅇ } \\ & \text { RitcSet } \end{aligned}$	This statement sets 6 bytes data of time to a variable. This data corresponds with year, month, day, day of week, hour and minute. The variable value in hexadecimal corresponds to the year, month, day, day of a week, hour and minute (in decimal). RtcSet on: updates the 6 bytes data continuously. RtcSet off: updates the 6 bytes data only once.	- User variable: any user or internal user variable ($\mathrm{U}(\mathrm{xx})$ or $\mathrm{UL}(\mathrm{xx})$).
Format		
RtcSet on/off <user variable>		
- RtcSet on $\mathbf{U}(<k>)$: It will set $U(<k>)$ with 2 bytes for year and 2 bytes for month, $U(<k+1>)$ with 2 bytes for Month's day and 2 bytes for week's day(00 for Sunday, 06 for Saturday), and $\mathrm{U}(<\mathrm{k}+2>)$ with 2 bytes for hour and 2 bytes for minutes.		
- RtcSet on UL(<k>): It will set UL(<k>) with 2 bytes for year, 2 bytes for month, 2 bytes for month's day and 2 bytes for week's day (00 for Sunday, 06 for Saturday), and UL(<k+1>) with 2 bytes for hour, 2 bytes for minutes and 4 bytes of padding(0000).		

Example

Flowchart	Te
	```entry rtcset off U(00) end```

After executing the program (with the watch LCD operator attached), the hexadecimal value of the first 2 bytes of $U(00)$ will correspond with the current year and the hexadecimal value of the last 2 bytes of $U(00)$ will correspond to the current month.
I.e. if the example program runs on July $5^{\text {th }}$ (Monday) of 2010 at 02:29 P.M., then $U(00), U(01)$ and $U(02)$ will display the following values:

Parameter...	...display in decimal   format...	Which converted to   hexadecimal format   results in...	...which means
$U(00)$	4103	1007	'10' for 2010   '07' for July
$U(01)$	1281	0501	'05 for $5{ }^{\text {th }}$ day of month   '01' for Monday
$U(02)$	5161	1429	' 14 ' for 2 p.m.   ' 29 ' for 29 minutes

## 6-6 Inverter Control Commands

Run FW		
Command	Description	Arguments
(FW)   RunFw	Makes the inverter run the motor in forward direction (starts the inverter output).   This command is a shortcut of the func $=$ value command.	---
Format		
FW $=1$ for RX and MX2 or UP $=1$ for LX		
Note: The instruction is available since CX-Drive v2.10.		


Run RV		
Command	Description	Arguments
RV)	Makes the inverter run the motor in   reverse direction (starts the inverter   output).   This command is a shortcut of the func $=$   value command.	
RunRiv ---		


Stop		
Command	Description	
STop	Makes the inverter decelerate and stop   the motor (stop the inverter output).	
Stop	Format	


Set Freq		
Command	Description	Arguments
SetFreq	It sets the frequency of the inverter.   This command is a shortcut of the $\quad=$   command.   Units: 0.01 Hz.	- Value: any variable or constant   (range from 0 to 40000).
Format		
Set-Freq $=<$ value>		
Note: This instruction is available since CX-Drive v2.10.		

Example


This program will run the motor in forward direction at 10 Hz if general input contact Xw is 1 . If general input contact $X$ w is 2 , it will run in reverse direction at 15 Hz . For other values the motor will stop.

Trip		
Command	Description	Arguments
Trip	This instruction makes inverter trip.	- Value: any variable or constant   (range 0 to 9).
Format		
Trip<value>		

Example


This sample program will throw a user trip on the inverter when digital input $X(01)$ is set to $O N$.

Accel		
Command	Description	Arguments
It sets the acceleration time of the   inverter.   This command is a shortcut of the ' $=$ '   command.   Units: 10 ms.	- Value: any variable or constant   (range from 1 to 360000).	
Format		
Accel =<value>		
Note: Parameters P031 for MX2 and RX or A053 on LX must be set to value 3 (Drive programming)   for the command to become effective.		


Decel		
Command	Description	Arguments
ded	It sets the deceleration time of the   inverter.   This command is a shortcut of the ' $=$ '   command.   Units: 10 ms	- Value: any variable or constant   (range from 1 to 360000 ).
Decel		
Format		
Decel = <value>		
Note: Parameters P031 for MX2 and RX or A053 on LX must be set to value 3 (Drive programming)   for the command to become effective		

Example


This sample program will set the Acceleration to 10 seconds and deceleration to 20 seconds if digital input $X(00)$ is set to $O N$.

## 7- Drive Programming specific trips and Troubleshooting

The table below shows how to handle the specific errors to Drive Programming function. For details on other errors in the inverter, refer to the inverter instruction manual.

Factor code	Error (causing inverter trip)	Possible cause	Checking method	Corrective action
E43	Invalid instruction	The PRG terminal was turned on without a program downloaded to the inverter.	By uploading the program, you can check if really a program is in the inverter or not.	Recreate the program, and then download it to the inverter
E44	Nesting count error	Subroutines are nested in more than eight layers.	Read the program to check the number of nesting layers (some times difficult to recognize)...	Correct the program so that the number of layers will be eight or less.
		For-Next loop statements are nested in more than eight layers.		
		If statements are nested in more than eight layers.		
E45	Instruction error 1	The jump destination of a GoTo instruction is a next instruction to end a for or other loop.	Check whether each GoTo instruction jumps to an instruction that ends a loop.	Correct the jump destinations of GoTo instructions. As general recommendation, never jump a Goto out of the current level it is.
		The variable " $U$ (ii)" referenced via another variable is not found.	Check the numerical value specified in " $\mathrm{U}(\mathrm{ii})$ ".	Correct the value of variable "U(ii)" or limit the range of values of variable "U(ii)".
		An arithmetic instruction caused:   -Overflow,   -underflow, or   -division by zero	Check the program for the instruction causing overflow, underflow, or division by zero (not in early MX2 firmware).	Correct the program so that no arithmetic instruction causes overflow, underflow, or division by zero.
		A ChgParam instruction caused:   - reference to a non existing parameter. -writing of a value out of the setting range -change of a parameter value (during inverter operation) that cannot be updated during inverter operation, or Change of a parameter value of which updating is restricted by software lock (when software lock is enabled).	-Check the parameters and the values to be written. -lf the error has occurred during inverter operation, check whether the parameter in question can be updated during inverter operation.   -Check the setting of software lock selection (b031).	-Correct the parameters or the values to be written to parameters so that they will be within the setting range.   -Disable software lock. -If the parameter to be updated is the one that cannot be updated during inverter operation, change the setting of software lock selection (b031) to "10" to switch to the mode enabling parameter updating during inverter operation.
$\begin{aligned} & \text { E50 } \\ & \text { to } \\ & \text { E59 } \end{aligned}$	User trip 0 to 9	These trips are generated from the user application. The cause is determined by the Drive Programming logic	Check with the drive program documentation to recognize the trip conditions	Check the drive program documentation to recognize countermeasures

## 8- Drive Programming Parameters - General Precautions

## 8-1 Parameters list affected by setting order

Parameter	
A003	Base frequency setting
A004	Maximum frequency setting
A203	Base frequency setting, ${ }^{\text {nd }}$ motor
A204	Maximum frequency setting, 2 ${ }^{\text {nd }}$ motor
B015	Free setting, electronic thermal frequency (1)
B017	Free setting, electronic thermal frequency (2)
B019	Free setting, electronic thermal frequency (3)
B049	Dual Rating Selection
B050	Controlled deceleration on power loss
B051	DC bus voltage trigger level of control deceleration
B052	Over-voltage threshold of control deceleration
B060	Maximum-limit level of window comparators O
B061	Minimum-limit level of window comparators O
B062	Hysteresis width of windows comparators O
B063	Maximum-limit level of window comparators OI
B064	Minimum-limit level of window comparators OI
B065	Hysteresis width of window comparator (OI)
B079	Watt-hour display gain setting
B082	Start frequency adjustment
B100	Free setting V/f freq. (1)
B102	Free setting V/f freq. (2)
B104	Free setting V/f freq. (3)
B106	Free setting V/f freq. (4)
B108	Free setting V/f freq. (5)
B110	Free setting V/f freq. (6)
B112	Free setting V/f freq. (7)
P070	Low-speed zero-return frequency

Note: this parameter list only affect MX2 and RX.

## 8-2 Parameters list affected by Rated Current (\%)

Parameter	
B012	Level of electronic thermal setting
B016	Free setting, electronic thermal current (1)
B018	Free setting, electronic thermal current (2)
B020	Free setting, electronic thermal current (3)
B022	Overload restriction level setting
B025	Overload restriction level 2 setting
B028	Current level of active freq. matching restart setting
B126	Brake release current setting
B212	Level of electronic thermal setting, 2 ${ }^{\text {nd }}$ motor
B222	Overload restriction operation mode, 2 ${ }^{\text {nd }}$ motor
C030	Digital current monitor reference value
C039	Low load detection level
C041	Overload level setting
C111	Overload setting (2)
C241	Overload level setting, 2 ${ }^{\text {nd }}$ motor

Note: this parameter list affect MX2. RX and LX.

## 8-3 Parameters list affected by PID enabled/disabled

Parameter	
A011	Pot./O-L input active range start frequency
A012	Pot./O-L input active range end frequency
A020	Multi-speed 0 setting
A021	Multi-speed 1 setting
A022	Multi-speed 2 setting
A023	Multi-speed 3 setting
A024	Multi-speed 4 setting
A025	Multi-speed 5 setting
A026	Multi-speed 6 setting
A027	Multi-speed 7 setting
A028	Multi-speed 8 setting
A029	Multi-speed 9 setting
A030	Multi-speed 10 setting
A031	Multi-speed 11 setting
A032	Multi-speed 12 setting
A033	Multi-speed 13 setting
A034	Multi-speed 14 setting
A035	Multi-speed 15 setting
A101	[OI] input active Range start frequency
A102	[OI] input active Range end frequency
A145	ADD frequency
A220	Multi-speed 0 setting, 2nd motor
F001	Output frequency setting

These parameters are affected by A071 / A075.
Note: this parameter list only affect MX2 and RX.

## 9 Insertion Point ( MX2 \& RX )

The Gain/Bias can be applied to any reference

## 9-1 'Frequency’ before ACC/DEC



Parameter		Description
A901	Insertion Point	0: Disable; 1 : Enable
A902	Insertion Point ‘Frequency' before ACC/Dec Gain	0 to $1000 \%$
A903	Insertion Point 'Frequency' before ACC/DEC Bias	-100 to +100\%

## 9-2 ‘Frequency’ after ACC/DEC



Parameter	Description	Range
A901	Insertion Point	$0:$ Disable; $1:$ Enable
A904	Insertion Point 'Frequency' after ACC/Dec Gain	0 to $1000 \%$
A905	Insertion Point 'Frequency' after ACC/DEC Bias	-100 to $+100 \%$

## 9-3 ‘Deviation’ before PID block



Parameter	Description	Range
A901	Insertion Point	0: Disable; 1: Enable
A906	Insertion Point ‘Deviation' before PID block Gain	0 to 1000\%
A907	Insertion Point ‘Deviation’ before PID block Bias	-100 to $+100 \%$

## Terms and Conditions of Sale

1. Offer; Acceptance. These terms and conditions (these "Terms") are deemed part of all quotes, agreements, purchase orders, acknowledgments, price lists catalogs, manuals, brochures and other documents, whether electronic or in writing, relating to the sale of products or services (collectively, the "Products") by Omron Electronics LLC and its subsidiary companies ("Omron"). Omron objects to any terms or conditions proposed in Buyer's purchase order or other documents which are inconsistent with, or in addition to, these Terms.
2. Prices; Payment Terms. All prices stated are current, subject to change without notice by Omron. Omron reserves the right to increase or decrease prices on any unshipped portions of outstanding orders. Payments for Products are due net 30 days unless otherwise stated in the invoice.
3. Discounts. Cash discounts, if any, will apply only on the net amount of invoices sent to Buyer after deducting transportation charges, taxes and duties, and wil be allowed only if (i) the invoice is paid according to Omron's payment terms and (ii) Buyer has no past due amounts.
4. Interest. Omron, at its option, may charge Buyer $1-1 / 2 \%$ interest per month or the maximum legal rate, whichever is less, on any balance not paid within the stated terms
5. Orders. Omron will accept no order less than $\$ 200$ net billing.
6. Governmental Approvals. Buyer shall be responsible for, and shall bear all costs involved in, obtaining any government approvals required for the importation or sale of the Products.
7. Taxes. All taxes, duties and other governmental charges (other than general real property and income taxes), including any interest or penalties thereon, imposed directly or indirectly on Omron or required to be collected directly or indirectly by Omron for the manufacture, production, sale, delivery, importation, consumption or use of the Products sold hereunder (including customs duties and sales, excise, use, turnover and license taxes) shall be charged to and remitted by Buyer to Omron.
8. Financial. If the financial position of Buyer at any time becomes unsatisfactory to Omron, Omron reserves the right to stop shipments or require satisfactory security or payment in advance. If Buyer fails to make payment or otherwise comply with these Terms or any related agreement, Omron may (without liabilucts sold hereunder and stop any Products in transit until Buyer pays all ucts sold hereunder and stop any Products in transit until Buyer pays all
amounts, including amounts payable hereunder, whether or not then due, amounts, including amounts payable hereunder, whether or not then due,
which are owing to it by Buyer. Buyer shall in any event remain liable for all which are owing
unpaid accounts.
9. Cancellation; Etc. Orders are not subject to rescheduling or cancellation unless Buyer indemnifies Omron against all related costs or expenses.
10. Force Majeure. Omron shall not be liable for any delay or failure in delivery resulting from causes beyond its control, including earthquakes, fires, floods, strikes or other labor disputes, shortage of labor or materials, accidents to machinery, acts of sabotage, riots, delay in or lack of transportation or the requirements of any government authority.
11. Shipping; Delivery. Unless otherwise expressly agreed in writing by Omron: a. Shipments shall be by a carrier selected by Omron; Omron will not drop ship except in "break down" situations.
b. Such carrier shall act as the agent of Buyer and delivery to such carrier shall constitute delivery to Buyer;
c. All sales and shipments of Products shall be FOB shipping point (unless otherwise stated in writing by Omron), at which point title and risk of loss shall pass from Omron to Buyer; provided that Omron shall retain a security interest in the Products until the full purchase price is paid;
d. Delivery and shipping dates are estimates only; and
. Omron will package Products as it deems proper for protection against normal handling and extra charges apply to special conditions.
12. Claims. Any claim by Buyer against Omron for shortage or damage to the Products occurring before delivery to the carrier must be presented in writing to Omron within 30 days of receipt of shipment and include the original transportation bill signed by the carrier noting that the carrier received the Products from Omron in the condition claimed.
13. Warranties. (a) Exclusive Warranty. Omron's exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by Omron (or such other period expressed in writing by Omron). Omron disclaims all other warranties, express or implied. (b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABIL-

ITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE. Omron further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. Omron's sole obligation hereunder shall be, at Omron's election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall Omron be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless Omron's analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by Omron before shipment. Omron Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty. See http://www.omron247.com or contact your Omron representative for published information.
14. Limitation on Liability: Etc. OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY. Further, in no event shall liability of Omron Companies exceed the individual price of the Product on which liability is asserted.
15. Indemnities. Buyer shall indemnify and hold harmless Omron Companies and their employees from and against all liabilities, losses, claims, costs and expenses (including attorney's fees and expenses) related to any claim, investigation, litigation or proceeding (whether or not Omron is a party) which arises or is alleged to arise from Buyer's acts or omissions under these Terms or in any way with respect to the Products. Without limiting the foregoing, Buyer (at its own expense) shall indemnify and hold harmless Omron and defend or settle any action brought against such Companies to the extent based on a claim that any Product made to Buyer specifications infringed intellectual property rights of another party.
16. Property; Confidentiality. Any intellectual property in the Products is the exclusive property of Omron Companies and Buyer shall not attempt to duplicate it in any way without the written permission of Omron. Notwithstanding any charges to Buyer for engineering or tooling, all engineering and tooling shall remain the exclusive property of Omron. All information and materials supplied by Omron to Buyer relating to the Products are confidential and proprietary, and Buyer shall limit distribution thereof to its trusted employees and strictly prevent disclosure to any third party.
17. Export Controls. Buyer shall comply with all applicable laws, regulations and licenses regarding (i) export of products or information; (iii) sale of products to "forbidden" or other proscribed persons; and (ii) disclosure to non-citizens of regulated technology or information.
18. Miscellaneous. (a) Waiver. No failure or delay by Omron in exercising any right and no course of dealing between Buyer and Omron shall operate as a waiver of rights by Omron. (b) Assignment. Buyer may not assign its rights hereunder without Omron's written consent. (c) Law. These Terms are governed by the law of the jurisdiction of the home office of the Omron company from which Buyer is purchasing the Products (without regard to conflict of law principles). (d) Amendment. These Terms constitute the entire agreement between Buyer and Omron relating to the Products, and no provision may be changed or waived unless in writing signed by the parties. (e) Severability. If any provision hereof is rendered ineffective or invalid, such provision shall not invalidate any other provision. (f) Setoff. Buyer shall have no right to set off any amounts against the amount owing in respect of this invoice. (g) Definitions. As used herein, "including" means "including without limitation"; and "Omron Companies" (or similar words) mean Omron Corporation and any direct or indirect subsidiary or affiliate thereof.

## Certain Precautions on Specifications and Use

1. Suitability of Use. Omron Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer's application or use of the Product. At Buyer's request, Product in the Buyer's application or use of the Product. At Buyer's request, Omron will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer's application, product or system. Buyer shall take application responsibility in all cases but the following is a non-exhaustive list of applications for which particular attention must be given: (i) Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or uses not described in this document.
(ii) Use in consumer products or any use in significant quantities.
(iii) Energy control systems, combustion systems, railroad systems, aviation systems, medical equipment, amusement machines, vehicles, safety equipment, and installations subject to separate industry or government regulations. (iv) Systems, machines and equipment that could present a risk to life or property. Please know and observe all prohibitions of use applicable to this Product.
NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO

ADDRESS THE RISKS, AND THAT THE OMRON'S PRODUCT IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.
2. Programmable Products. Omron Companies shall not be responsible for the user's programming of a programmable Product, or any consequence thereof.
3. Performance Data. Data presented in Omron Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of Omron's test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the Omron's Warranty and Limitations of Liability.
4. Change in Specifications. Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your Omron's representative at any time to confirm actual specifications of purchased Product.
5. Errors and Omissions. Information presented by Omron Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

## OMRON INDUSTRIAL AUTOMATION • THE AMERICAS HEADQUARTERS

Schaumburg, IL USA • 847.843.7900 • 800.556.6766 • www.omron247.com

OMRON CANADA, INC. • HEAD OFFICE
Toronto, ON, Canada • 416.286.6465 • 866.986.6766• www.omron247.com
OMRON ELECTRONICS DE MEXICO • HEAD OFFICE
México DF • 52.55.59.01.43.00 • 001.800.556.6766•mela@omron.com
OMRON ELECTRONICS DE MEXICO • SALES OFFICE
Apodaca, N.L. • 52.81.11.56.99.20•001.800.556.6766•mela@omron.com

OMRON ARGENTINA • SALES OFFICE
Cono Sur • 54.11.4783.5300

OMRON CHILE • SALES OFFICE
Santiago • 56.9.9917.3920
OTHER OMRON LATIN AMERICA SALES
54.11.4783.5300

OMRON ELETRÔNICA DO BRASIL LTDA • HEAD OFFICE
São Paulo, SP, Brasil • 55.11.2101.6300 • www.omron.com.br

OMRON EUROPE B.V. • Wegalaan 67-69, NL-2132 JD, Hoofddorp, The Netherlands. • Tel: +31 (0) 235681300 Fax: +31 (0) 235681388 • www.industrial.omron.eu


[^0]:    The P102 parameter calculation result is 700 .

